Category Archives: Fighter

Fighter

Focke-Wulf Fighter Project II (MP-Models)

TYPE: Fighter, interceptor

ACCOMMODATION: Pilot only

POWER PLANT: One Junkers Jumo 004B turbojet engine, rated at 950 kp thrust

PERFORMANCE: 541 mph at 13,130 ft

COMMENT: The earliest known Focke-Wulf attempt at a single-turbojet fighter, shown in a drawing dated November 1942, the Focke-Wulf Fw 190TL, had involved simply bolting a very basic in-house designed turbojet Fw T.1 to the front of an operational Fw 190.
On January 1943, company aerodynamicist J. C. Rotta offered a report entitled “Fundamentals For The Design of a Turbojet Fighter” which looked at how a large turbojet fighter ought to be, what sort of shape and layout would be best, what turbojet engines could be fitted and how, what the advantages and disadvantages of piston engines and turbojet engines were and what aerodynamic issues were.
To illustrate his points, Rotta came up with a trio of remarkably foresighted designs:

Fighter with turbojet engine BMW 003, P 3302 Design 1,
Fighter with turbojet engine BMW 003, P 3302 Design2, and
Fighter with turbojet engine Junkers Jumo 004.

Each of the three designs had its turbojet engine mounted on its back, just as the Heinkel He 162 would be configured 20 months later. The first and third designs also had forward-swept wings and backward-swept V-tails. The second BMW powered P 3302 design had unswept wings and an unswept V-tail.
However, Focke-Wulf’s design team seem to have completely ignored Rotta’s ideas when they actually started work on a series of single-seat, single-engine turbojet fighters. A report from August 1944 charts the team’s progress through seven different designs.
The first of these, dated March, 1943, was a tail-sitter based on a Fw 190 but with the cockpit relocated to the nose in place of the familiar BMW 801 piston engine, with the turbojet positioned directly below. But with this arrangement no satisfactory rolling properties were to be expected and there was also the risk of burning the airfield surface.
The second design from June, 1943, seems th have been more highly regarded and had its own separate “Baubeschreibung” (Construction description) number, the closest thing Focke-Wulf had to a “P” designation.
The wing was mounted mid-fuselage and had a slight sweep on the leading edge and straight trailing edges, the tailplane was similar to the Fw 190. The design had a tricycle undercarriage and a Junkers Jumo 004B turbojet engine was positioned more centrally under the fuselage. The cockpit was heavily protected by armor of varying thicknesses. Armament was to be two MK 108 (70 rounds each) or MK 103 30mm cannon in the fuselage nose and two MG 151/20 20mm cannon (175 rounds each) in the wing roots.
The main advantage of positioning the turbojet engine under the fuselage was to facilitate maintenance, but there were several bigger disadvantages to this design, such as the nose wheel blocking the intake on take-off and landing, objects being sucked into the air intake since it was so close to the ground. and the damage or destruction of the turbojet engine in case of a belly landing.
Finally, this design was rejected.
As far as the other five different designs are concerned.  Two oft them were basis for the later Focke-Wulf twin-boom Fighter Projekt VIII „Flitzer“ („Streaker“) and  swept-wing, high-mounted tailplane featured Focke-Wulf  interceptor Ta 183 „Huckebein“ (Ref: 17, Uhr, D. and D. Sharp: „Luftwaffe:Secret Projects Profile“, Mortons Media Group Ltd., Horncastle, U.K., 2018).

Heinkel He 280 V6 (Huma Models)

TYPE: Fighter aircraft

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004B-1 turbojet engines, rated at 900 kp thrust each

PERFORMANCE: 508 mph at 19,685 ft

COMMENT: The Heinkel He 280 was the first turbojet-powered fighter aircraft in the world. It was inspired by Ernst Heinkel‘s’s emphasis on research into high-speed flight and built on the company’s experience with the Heinkel He 178 turbojet prototype. A combination of technical and political factors led to it being passed over in favor of the Messerschmitt Me 262 „Schwalbe“ (Swallow). Only nine were built and none reached operational status
The Heinkel company began the He 280 project on its own initiative after the Heinkel He 178 had been met with indifference from the Reichsluftfahrtministerium (RLM, Reich Aviation Ministry).
Work on the project began under the Heinkel designation „Projekt 1065“ in late 1939 but in March, 1940, after receiving official support the designation Heinkel He 280 was applied. The design had a typical Heinkel fighter fuselage, elliptical wings and a dihedralled tailplane with twin fins and rudders. Power was provided by two Heinkel HeS 8 centrifugal turbojet engines and had a tricycle undercarriage landing gear with very little ground clearance. This arrangement was considered too frail for the grass or dirt airfields of the era; however, the tricycle layout eventually gained acceptance. The He 280 was equipped with a compressed-air powered ejection seat, the first aircraft to carry one and the first aircraft to successfully employ one in an emergency.
The first prototype was completed in the summer of 1940, but the Heinkel HeS 8 intended to power it was running into difficulties. On September 1940, while work on the engine continued, the first prototype started glide tests with ballasted pods hung in place of its engines. It was another six months before the second prototype flew under its own power, on March 1941. The aircraft was then demonstrated to Ernst Udet, head of RLM’s development wing, on April, 1941, but like its predecessor, it apparently failed to make an impression. One benefit of the He 280 which did impress the political leadership was the fact that the jet engines could burn kerosene, which requires much less expense and refining than the high-octane fuel used by piston-engine aircraft. However, government funding was lacking at the critical stage of initial development.
Over the next year, progress was slow due to the ongoing engine problems. A second engine design, the Heinkel HeS30 was also undergoing development, both as an interesting engine in its own right, as well as a potential replacement for the HeS 8. In the meantime, alternative powerplants were considered, including the Argus As 014 pulsejet that powered the Fieseler Fi 103 V-1 Flying bomb. It was proposed that up to eight be used.
Engine problems continued to plague the project. In 1942, the RLM had ordered Heinkel to abandon the HeS 8 and HeS 30 to focus all development on a follow-on engine, the Heinkel/Hirth HeS 011, a more advanced and problematic design. But because the HeS 011 was not expected for some time, Heinkel selected the rival BMW 003. However, this engine also had problems and delays. The second He 280 prototype was re-engined with Junkers Jumo 004  The Jumo 004 engines were much larger and heavier than the HeS 8 that the plane had been designed for, and while it flew well enough on its first powered flights from March 1943, it was clear that this engine was unsuitable. The aircraft was slower and generally less efficient than the Messerschmitt Me 262.
Meanwhile, the He 280 V4 and V5 had been completed, the latter with Heinkel-Hirth 001 turbojets and the former with BMW 003A-0 turbojets. The He 280 V5 was considered by Heinkel tob e representative of he proposed He 280A-1 production standart. Ist claimed peformance include a maimum speed of 509 mph at 19,685 ft at normal loaded weight. The Heinkel He 280 V6 was completed with Junkers Jumo 004 engines and full armament from the onset. Amarment consisted of three 20 mm MG 151 cannon in the fuselage nose and one 500 kg or two 250 kg bombs. The He 280 V6 was tested at Rechlin, and in early 1943, Heinkel tendered a proposal to the Technische Amt for the He 280B-1 fighter bomber with two Junkers Jumo 004 engines and an estimated maximum speed of 547 mph.
By this time, flight testing of the Messerschmitt Me 262 V4 suggested that the Messerschmitt fighter would have a performance advantage over the Heinkel He 280 when fitted with similar power plants, and particularly in so fas as range was concerned, this being a serious defect in the Heinkel fighter’s performance. Thus, on March 1943 the Technische Amt instructed Heinkel to abandon all further development of the He 280 as a fighter, permission being given to complete only the nine prototypes which were allocated to various test programmes (Ref.: 7, 24).

Messerschmitt Me 609 (Huma-Models)

TYPE: Fighter, Fighter bomber

ACCOMMODATION: Pilot only

POWER PLANT: Two Daimler-Benz DB 603 liquid-cooled engines, rated at 1,726 hp each

PERFORMANCE: 472 mph (estimated)

COMMENT: The Messerschmitt Me 609 was a short-lived WW II German project which joined two fuselages of the Messerschmitt Me 309 fighter prototype together to form a heavy fighter.
The project was initiated in response to a 1941 RLM (Reich Air Ministry) requirement for a new “Zerstörer” (destroyer, or heavy fighter) to replace the Messerschmitt Bf 110 in a minimum time and with a minimum of new parts The new design would use components from existing aircraft, thus not disrupting existing production. After the cancellation of the Messerschmitt Me 309 project in 1943, work was continued using it as a basis for other designs. One of these reworked designs was for the Me 509; another was for the 609, which was basically two Me 309 fuselages joined with a new center wing section. Messerschmitt was also working on and had completed a twin-fuselage Bf 109, known as the Me109Z, but the prototype was destroyed before flight testing.
Two Me 309 fuselages were to be joined with a constant chord center wing section, into which two inboard landing gears retracted. The outboard landing gears were resigned, two nose wheels retracted to the rear and rotating 90 degrees to lie flat beneath the engines. This resulted in an unusual four-wheel arrangement.  Power was to be supplied by two Daimler Benz 603 or 605 12 cylinder inverted V liquid -cooled engines. The pilot sat in a cockpit located in the port fuselage, with the starboard cockpit canopy being faired over.
Two versions were envisioned: a heavy fighter (“Zerstörer”) and a high-speed bomber (“Schnellbomber”, fast bomber). In the fighter version, two MK 108 30 mm cannon and two MK 103 30mm cannon were projected as the armament, with a provision for two additional MK 108 30mm cannon mounted beneath the center wing section or under the outer wing sections. In addition, either one SC 500 or two SC 250 bombs could be carried, also beneath the center wing section. The fast bomber version would have reduced armament, with only two MK 108 30mm cannon were to be installed. Extra fuel (1500 kg) could be carried in the faired over starboard cockpit, and the bomb load was to consist of two SC 1000 bombs which were carried beneath each fuselage.
Finally, a two seater night fighter variant, Messerschmitt Me 609 NJ (Nachtjäger, Night fighter) was envisioned with FuG 220 “Lichtenstein SN-2” antennas mounted at the outer wings. The pilot sat in the port and the radar operator in the starboard fuselage.
Even though it was calculated that many components of the Me 309 could be used (fuselage, engines, equipment, 80% of the wings), by the time this design began to jell, the Messerschmitt Me 262 turbojet fighter was proving to be the plane of the future, and could take over all roles for which the Me 609 was designed. Thus, the Me 609 project was no longer pursued after 1944 (Ref.: 24).

Messerschmitt “Projekt Wespe II” (Project Wasp II), (Unicraft Models, Resin)

TYPE: Short-range fighter, fighter bomber

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel/Hirth HeS 011 turbojet engine, rated at 1,300 kp thrust

PERFORMANCE: No data available

COMMENT: This late WW II Messerschmitt „Projekt Wespe” (Wasp) is mostly unknown, and information on it is incomplete. Two seperate fuselages were designed for the „Wespe”:
Design Messerschmitt „Projekt Wespe I” had the cockpit located midway along the fuselage, and the single turbojet engine was located at the rear and was fed by a long air duct. A long tapering single fin and rudder was chosen, with the tail planes located about halfway up.
Design Messerschmitt „Projekt Wespe II” had the cockpit located far forward on the fuselage, and the single He S 011 turbojet was mounted mid fuselage. It was fed by an air duct which wrapped under the forward fuselage, and exhausted below a tail boom with a V- Tail unit.
Both designs used a tricycle landing gear arrangement, with the main gear retracting inwards from the wing and the front gear retracting forwards. No armament was specified, but at this stage in the war two MK 108 30mm cannon would probably have been fitted. Priority for both designs was the use of non-strategic material as much as possible, reduction of time for maintenance and adequate flying characteristics (Ref.: 17).

Messerschmitt Me 163C V1 (A+V Models, Resin)

TYPE: Rocket-powered interceptor fighter

ACCOMMODATION: Pilot only

POWER PLANT: One Walter HWK 509C-1 bi-fuel rocket engine, rated at 2,000 kp main chamber plus 400 kp auxiliary chamber

PERFORMANCE: 596 mph at 40,000 ft.

COMMENT: As soon as it was realized that the HWK 509A rocket engine of the Messerschmitt Me 163B “Komet” consume appreciable more fuel than had been calculated, reducing commensurately the powered endurance of the aircraft, Professor Walter began investigating the possibility of introducing an auxiliary cruising chamber which achieved test status during 1944 in two B-series prototypes, the Me 163B V6 and Me 163B V18, these subsequently serving as test beds for the Me 163C-series. The cruising chamber afforded a thrust of 400 kp which was additional to the normal full-power thrust rating, and the intention was that the aircraft should take off and climb to operational altitude with both rocket chambers operating at full thrust, then cut the main chamber and cruise on the power of the auxiliary chamber alone. Apart from provision of a fully-retractable tailwheel which was positioned further forward to allow for the twin vertically-disposed rocket pipes, some revision of the keel line and shortening of the landing skid, the Me 163B V6 and Me 163B V18 were externally similar to the standard Me 162B-series production aircraft.
On July 1944, test pilot Rolf Opitz took off from Peenemünde in the Me 163B V18 for the first climb calibration trials with both rocket chambers functioning. Everything went according to plan until, just above 13,000 ft., the aircraft began to accelerate. At 14,760 ft. the climb rate of the aircraft was still increasing and within four seconds the aircraft has passed 16,400 ft. Another few seconds and the aircraft exceeded its critical Mach number, and Opitz promptly cut the rocket motor. The prototype immediately went into a steep dive from which Opitz only succeeded in recovering a few feet above the waters of the Baltic Sea. After landing back at Peenemünde Opitz discovered that almost the entire rudder of the aircraft had been ripped away, and it was subsequently ascertained the Me 163B V18 had attained a speed of 702 mph.
While test with both prototypes were proceeding, the Messerschmitt drawing office was working on a refined version of the rocket fighter, the Messerschmitt Me 163C, intended from the onset to utilize the auxiliary cruising chamber. While the wings of the new model were essentially similar to those of the Me 163B, a new centre section was introduced which increased overall span and gross area. This was married to an enlarged fuselage of improved fineness ratio which accommodated the pilot in a pressurized cockpit enclosed by a blister-type all-round vision canopy. The T-Stoff and C-Stoff tankage was increased and the armament, which could comprise either two 20-mm MG 151 or two 30-mm MK 108 cannon, was transferred from the wing roots to the fuselage. The additional tank capacity and cockpit pressurization allowed the maximum altitude to increase to 52,000 ft, as well as improving powered time to about 12 minutes, almost doubling combat time (from about five minutes to nine).
Preparations for the series production of the new model as Messerschmitt Me 163C-1a began late in 1944, but only three were reportedly completed, the being allocated “Versuchs” number as Me 163C V1, V2 And V3, and only one is known to have flown before all three were destroyed to prevent them falling into Soviet hands (Ref.: 7).

Heinkel He P.1073.09-44 (Revell Models, Parts scratchbuilt)

TYPE: Fighter project, forerunner of the Heinkel He 162

ACCOMMODATION: pilot only

POWER PLANT:  one Heinkel-Hirth HeS 011 turbojet engine, rated at 1.300 kp thrust

PERFORMANCE: 615 mph in 19615 ft

COMMENT: The summer 1944 saw limitations of the Messerschmitt Me 262 becoming readily apparent. The basic design predated the war. It was heavy and expensive, and required to precious turbojet engines. A cheap high-performance replacement was needed so in July 1944 the RLM issued a requirement for a new single-turbojet high-performance fighter, known as the “1-TL-Jäger”. Germany’s aircraft companies were quick to realise that this was potentially the most important competition in which they had so far had the opportunity to participate. Designing a successful single-seat fighter carries a huge amount of prestige and the most famous firms – Blohm &Voss, Focke-Wulf , Heinkel, Junkers and Messerschmitt – jumped at the chance to create the successor to not only on the me 262 but perhaps also the Bf 109 and Fw 190 too. The engine was to be a Heinkel-Hirth HeS 011 turbojet and the companies were allowed two months to prepare their first designs, Blohm & Voss had two months more time.
On September 1944 the designs were presented at a meeting at Messerschmitt’s Oberammergau facility. It is not known which designed were presented by Messerschmitt and Heinkel, though it is likely that these were one of the earliest versions of the former’s Me P.1101, and the latter’s He P.1073 or a variant of it. Focke-Wulf put forward a twin-boom design Nr.280 it had been working on since early 1944. Blohm & Voss’s design (P.212) was apparently not ready and furthermore it was agreed that Junkers should also be allowed to submit a tender for the requirement.
On the last day of the meeting, a new requirement was suddenly and for most part unexpectedly issued for what would become the “Volksjäger” (Peoples Fighter). This called for a fighter powered by a single BMW 003 turbojet engine that could reach a maximum speed of 466 mph and have an endurance of 30 minutes at full throttle. It also had to be able to operate from poor airfields.
This urgent demand for new single-turbojet fighter designs that could be built in a hurry from low grade non-strategic materials effectively stalled work on the “1-TL-Jäger” competition for several months, particularly Blohm & Voss, Focke-Wulf, Heinkel and Junkers all hastily drafted entries for the “Volksjäger” contest.
The Heinkel He P.1073, originally designed before July 1944 as a fighter with two Junkers Jumo 004C turbojet-engines, one under the nose and one at its back but now altered to fly with just one Heinkel-Hirth HeS 011, was already close to meeting the “Volksjäger” specification. The Heinkel “Volksjäger”-design He P.1073.01.18 was dated from September 1944, just one day after the specification was issued. This only was possible because Heinkel’s design team had several different variants of the design on the drawing board. The documentation describes the He P.1073.01.18 as a “Kleinst-Jäger” (Midget Fighter) and states it is ”a simplification of the design with HeS 011”. It bears remarkable resemblance to what would become the Heinkel He 162 “Spatz” (Sparrow”) except the wings are simpler and both nose wheel and main gear retract forward into the fuselage. Heinkel’s design received a similarly lukewarm reaction, probably because it was based heavily on the company’s already known “1-TL-Jäger” project. But Heinkel’s representatives pointed out that with aircraft such as the Heinkel He 177 bomber no longer in production there was now spare capacity available at its capacious and well-equipped factories. There is some evidence that on September 23rd 1944 Hitler himself ordered the He P.1073 into mass production as Heinkel He 162.
The variant of the He P.1073 design that finally led to the definitive Heinkel He 162 “Volksjäger” is shown here. The design is dated back from September 10th, 1944 and shows the installation of the turbojet engine on the back. The wings are swept back at 35 degree, the tail plane had a positive dihedral and two fins. Under the fuselage on ventral starboard side a streamlined pannier was fitted holding a MK 108 machine canon and two MG 213C machine guns were oblique mounted in the front at both sides of the pilot’s seat. Work on the final version of the Heinkel “Volksjäger began on October 25th, 1944 and its maiden flight took place on December 6th that year (Ref.: Sharp, Dan: Luftwaffe. Secrets Jets of the Third Reich. Mortons Media Group Ltd, Horncastle, 2015).

Messerschmitt Me 262 HG IV (Hochgeschwindigkeits Projekt IV, High-speed project IV), (Unicraft Models, Parts from Revell)

TYPE: High-speed research aircraft

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004C, rated at 1050 kp each or two Heinkel/Hirth HeS 011 turbojet engines, rated at 1,200 kp each

PERFORMANCE: High sub-sonic speed (estimated)

COMMENT: The Messerschmitt Me 262 HG IV („Hochgeschwindigkeits-Projekt IV“, „High-speed Project IV“) was a high-speed concept which would be based on the Messerschmitt Me 262 „Schwalbe“ („Swallow“). The design dates back to early 1940 when attempt were made to test the revolutionary turbojet driven aircraft at critical Mach numbers.
Several proposals were calculated on the drawing board and even one design realized:
The Messerschmitt Me 262 V9 HG I was flight tested in January 1944. During the course various aerodynamic improvements were introduced into a basic Me 262 aircraft. The leading edge of the inner wing as well as of the vertical tail was increased to 45 degree, the leading edge of the horizontal tail was swept back to 40 degree, a shallow, low-drag cockpit canopy was installed, and the muzzles were faired over. The highest speed attained by this experimental aircraft being 624 mph.
On the drawing board remained the Messerschmitt Me 262 HG II and Me 262 HG III, both designs in various subtypes with different wings, conventional as well as with “Butterfly”-type tail plane, different engine installation and air intake.
Finally, the Messerschmitt Me 262 HG IV was a basic Messerschmitt Me 262 aircraft with original wing section and low mounted nacelles, housing the turbojet engines, but an intensively modified fuselage similar to the Me 262 HG III/3. The cockpit was placed to the rear of the fuselage merging into the tail plane, fuel tanks and armament was set at the front of the aircraft.
All Messerschmitt Me 262 HG II, Me 262 HG III and Me 262 HGIV were never realized

Messerschmitt Me 209 V1 (Huma Models)

TYPE: Racing aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Daimler-Benz DB 601 ARJ liquid-cooled engine, rated at 1,775 hp

PERFORMANCE: 469 mph

COMMENT: The Messerschmitt Me 209 V1 was a single-engine racing aircraft which was designed for and succeeded at breaking speed records.
The designation Me 209 was used for two separate projects during World War II. The first was a record-setting, single-engined race aircraft, for which little or no consideration was given to adaptation for combat. The second Me 209  V4 was a proposal for a follow-up to the highly successful Messerschmitt Bf 109 which served as the Luftwaffe’s primary fighter throughout World War II.
Designed in 1937, the Me 209 V1 was a completely separate aircraft from the Messerschmitt Bf 109, solely designed to break speed records. It shared only its Daimler-Benz DB 601 engine with the Bf 109, which in the Me 209 was equipped with steam cooling. Willy Messerschmitt designed the small aircraft with a cockpit placed far back along the fuselage just in front of its unique cross-shaped tail section. Unlike the Bf 109, the Me 209 featured a wide track, inwardly-retracting undercarriage mounted in the wing section.
The aircraft achieved its purpose when test pilot Fritz Wendel flew it to a new world speed record of almost 469 mph on 26 April 1939, bearing the German civil registration D-INJR. This record was not officially broken by another piston-engined aircraft until 16 August 1969 by Darry Greenamyer’s highly modified Conquest F8F “Bearcat”.
The Me 209 V1’s speed record was itself shattered in terms of absolute speed, eighteen months later by Heini Dittmar, flying another Messerschmitt aircraft design, the Messerschmitt Me 163A V4 rocket fighter prototype to a 624 mph record in October 1941.
The idea of adapting the Messerschmitt Me 209 racer to the fighter role gained momentum when, during the Battle of Britain, the Messerschmitt Bf (Me)109 failed to gain superiority over the Royal Air Force’s Supermarine “Spitfire”. The little record-setter, however, was not up to the task of air combat. Its wings were almost completely occupied by the engine’s liquid cooling system and therefore prohibited conventional installation of armament. The aircraft also proved difficult to fly and extremely hard to control on the ground. Nevertheless, the Messerschmitt team made several attempts to improve the aircraft’s performance by giving it longer wings, a taller vertical stabilizer, and installing two synchronized 7.92 mm MG 17 in the engine cowling. Several modifications on the aircraft, designated Messerschmitt Me 209 V4, however, added so much weight that the aircraft ended up slower than the contemporary Bf 109E. As a result the complete Messerschmitt Me 209 project was soon cancelled, but was revived later in form of the Messerschmitt Me 209 V5. (Ref.: 24).

Messerschmitt Me 163B V41 “Komet“ („Comet“), Erprobungskommando 16, (Heller)

TYPE: Rocket-powered interceptor

ACCOMMODATION: Pilot only

POWER PLANT: One Walter HWK 109-509A-2 liquid-fuel rocket engine rated between 1,500 kp to 100 kp full variable

PERFORMANCE: 559 mph at all altitudes

COMMENT: The Messerschmitt Me 163 “Komet” (“Comet”) was a German rocket-powered interceptor aircraft. Designed by A. Lippisch, it was the only rocket-powered fighter aircraft ever to have been operational and the first piloted aircraft of any type to exceed 1000 km/h (621 mph) in level flight. Its performance and aspects of its design were unprecedented. The Messerschmitt Me 163 “Komet” was among the most technically advanced and inherently dangerous military aircraft ever to see service. The radical ‘tailless’ design was developed by Dr Alexander Lippisch as the DFS 194 at the Deutsche Forschungsanstalt für Segelflug, (German Research Institute for Sailplanes) at Darmstadt in the 1930s. In January 1939, project work on the DFS 194 was transferred to Messerschmitt AG at Augsburg responsible for fitting a rocket motor. Lippisch also moved to Messerschmitt AG to head the development project team. The rocket-powered sailplane DFS 194 made its first flight on August 1940 what was very successful. Although Messerschmitt was not impressed by the concept of a rocket-powered interceptor, Lippisch and his team continued work on the project. Officially designated Messerschmitt Me 163 the aircraft was first flown under rocket power in 1940 becoming the first aircraft to exceed 1000 km/h, experiencing control problems on the edge of the sound barrier.
Five prototype Messerschmitt Me 163A V-series aircraft were built, adding to the original DFS 194 (V1), followed by eight pre-production examples designated as Me 163 A-0. These aircraft were intensively tested by the Luftwaffe and although its extraordinary acceleration, climbing characteristics and speed inspired the authorities the handling of this tiny aircraft especially during take-off and landing showed tremendous problems. The rocket engine gave power for only a few minutes and the rest of the flight had to be continued as a glider.
Five prototypes and eight pre-production examples were followed by 30 completely redesigned production aircraft Messerschmitt Me 163B-0. These aircraft were armed with two 20 mm MG 151/20 cannon and some of these were allocated to “Erprobungskommando16” (EKdo 16) (“Testing-command 16”) that was formed March 1943 in Peenemünde-West, as a test unit for the rocket fighter, and later based at the Luftwaffe airfield in Bad Zwischenahn for a considerable period of time. This EKdo 16 had some of the aircraft painted completely in red and was the first Luftwaffe unit to perform a combat mission.
The performance of the Me 163 far exceeded that of contemporary piston engine fighters. At a speed of over 200 mph the aircraft would take off, in a so-called “Scharfer Start” (“sharp start”, “sharp take-off”) from the ground, from its two-wheeled dolly. The aircraft would be kept at level flight at low altitude until the best climbing speed of around 420 mph was reached, at which point it would jettison the dolly, retract its extendable landing skid and then pull up into a 70° angle of climb, to a bomber’s altitude. It could go higher if required, reaching 39,000 ft in an unheard-of three minutes. Once there, it would level off and quickly accelerate to around 550 mph or faster, which no Allied fighter could match. Flight endurance under power was just eight minutes after which the aircraft became a glider, and the time available to attack enemy aircraft using  two 20mm cannons was very limited. Once the rocket’s fuel supply was exhausted the Me 163B “Komet” was an easy target for fighter aircraft, particularly during the landing phase (Ref.: 24).

Messerschmitt Me 262 HG III/ Concept 3 (Unicraft Models, Resin)

TYPE: High-speed test aircraft. Project

ACCOMMODATION: Pilot only

POWER PLANT: Two Heinkel-Hirth HeS 011 turbojet engines, rated at 1,300 kp thrust each

PERFORMANCE: High subsonic speed, estimated

COMMENT: In early 1941 several high speed versions of the basic Messerschmitt Me 262 were designed on the drawing board. The first of these “Hochgeschwindigkeitsjäger” (HG), (High-speed fighter) was the Messerschmitt Me 262 V9, unofficially called HG I. This aircraft featured modified wing leading edges of the inner wing section, swept angles of stabilizers, and a “Rennkabine” (Racing canopy), shallow, low-drag cockpit canopy and windscreen with low profile.
Other two projects were created following this way: The Me 262 HG II called for an outboard wing of increased chord and an improved air intake and engine installation, and finally  the Me 262 HG III, which was the final stage of development. It required more radical modifications, as a new 45 degree swept wing with engines housed in the wing roots. Three variants of the Me 262 HG III are known correspond to the original layout.
Entwurf 1” (Concept 1) had a the original tail plane of the Me 262, “Entwurf 2” (Concept 2) had a butterfly-type tail plane, and “Entwurf 3” (Concept 3) together with various subtypes was considerably altered in the fuselage area, where the cockpit was relocated at the rear and formed a part of the empennage group. The swept back stabilizers were located behind the cockpit. This Messerschmitt Me 262 HG III/ Concept 3 attained a very high state of fighter technology, which in the post-war period was the only realized abroad after a passage of several years.