About ModelPlanes.de

Brief description: This picture gallery contains aircraft models of World War II on a scale 1:72 as injection moulded, resin- and vacu- formed kits as well as home-made conversions.

Dear Visitor,

Here, you will find photos of aircraft models of World War II on a scale 1:72. e.g. those of the United States Army Air Force (USAAF), the United States Navy (USN), the Royal Air Force (RAF), the Royal Navy (RN) , the Imperial Japanese Army Air Force (IJAAF), the Imperial Japanese Navy Air Force (IJNAF), the German Air Force (Luftwaffe, GAF) and the Air Force of the Soviet Union. Within these branches of the services you can select between fighters, fighter-bombers, bombers, trainers etc. Also you can select projects, designed on the drawing board as well as post-war developments, whose origin dated back into the time of WW II.

Important notice: Among the aircraft models shown here there are many aircraft from the former German Air Force (Deutsche Luftwaffe). They all show the swastika as a national symbol of that time. I would like to point out that this is not a political statement, but rather a source of historical information on the types of aircraft flown by the German Luftwaffe before and during the Second World War. It is to be taken as a reference for all aviation enthusiasts, and not taken as an expression of any sympathy for the Nazi regime or any  Neo-Nazi or Right wing hate Groups.

I have built all these models just for fun and never, it has been my intention to show them anybody or to present them at a show. Over the years more then 1.500 models have emerged, and many more kits have not been completed yet, or are still waiting for the finish or the last little detail.

Continue reading About ModelPlanes.de

Yakovlev Yak-3 (Heller)

TYPE: Fighter aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Klimov M-105PF2 liquid-cooled piston engine, rated at 1,290 hp

PERFORMANCE: 401 mph at 13,451 ft

COMMENT: The Yakovlev Yak-3 was a single-engine single-seat WW II Soviet front line fighter aircraft. Robust and easy to maintain, it was much liked by pilots and ground crew alike. It was one of the smallest and lightest major combat fighters fielded by any combatant during the war. Its high power-to-weight ratio gave it excellent performance. It proved a formidable dogfighter.
The origins of the Yak-3 went back to 1941 when the I-30 prototype was offered along with Yakovlev I-26 (Yak-1) as an alternative design. The I-30, powered by a Klimov M-105P engine, was of all-metal construction, using a wing with dihedral on the outer panels. Like the early Yak-1, it had a 20 mm ShVAK cannon firing through the hollow-driveshaft nose spinner and twin 7.62 mm synchronized ShKAS machine guns in cowl mounts ahead of the cockpit on the fuselage, but was also fitted with a ShVAK cannon in each wing. The first of two prototypes was fitted with a slatted wing to improve handling and short-field performance while the second prototype had a wooden wing without slats, in order to simplify production. The second prototype crashed during flight tests and was written off. Although there were plans to put the Yak-3 into production, the scarcity of aviation aluminum and the pressure of the German invasion led to work on the first Yak-3 being abandoned in late fall 1941.
In 1943, Yakovlev designed the Yak-1M which was a lighter version of the Yak-1. It incorporated a wing of similar design, but with smaller surface area and had further aerodynamic refinements, like the new placement of the oil radiator, from the chin to the wing roots (one of the visual differences with the Yak-1, -7, -9). A second Yak-1M prototype was constructed later that year, differing from the first aircraft in that it had plywood instead of fabric covering of the rear fuselage, mastless radio antenna, reflector gunsight and improved armor and engine cooling. The chief test pilot for the project P. M. Stefanovsiy was so impressed with the new aircraft that he recommended that it should completely replace the Yak-1 and Yak-7 with only the Yak-9 retained in production for further work with the Klimov VK-107 engine. The new fighter designated the Yak-3 entered service in 1944, later than the Ya-9 in spite of the lower designation number.
The first 197 Yak-3 were lightly armed with a engine-mount 20 mm ShVAK cannon and one 12.7 mm UBS- synchronized machine gun, with subsequent aircraft receiving a second UBS for a weight of fire of 2.72 kg per second using high-explosive ammunition. All armament was installed close to the axis of the aircraft (cannon mounted in the engine “vee”, and firing through the propeller boss; and synchronized machine guns in the fuselage above the engine), adding to the accuracy and leaving wings unloaded.
Production accelerated rapidly, so that by mid-1946, 4,848 had been built. Before the end of the war it was also flown by Polish Air Forces (of the Polish People’s Army formed in USSR) and after the war ended, it was flown by the Yugoslav Air Force (Ref.: 24).

Heinkel He P.1073.09-44 (Revell Models, Parts scratchbuilt)

TYPE: Fighter project, forerunner of the Heinkel He 162

ACCOMMODATION: pilot only

POWER PLANT:  one Heinkel-Hirth HeS 011 turbojet engine, rated at 1.300 kp thrust

PERFORMANCE: 615 mph in 19615 ft

COMMENT: The summer 1944 saw limitations of the Messerschmitt Me 262 becoming readily apparent. The basic design predated the war. It was heavy and expensive, and required to precious turbojet engines. A cheap high-performance replacement was needed so in July 1944 the RLM issued a requirement for a new single-turbojet high-performance fighter, known as the “1-TL-Jäger”. Germany’s aircraft companies were quick to realise that this was potentially the most important competition in which they had so far had the opportunity to participate. Designing a successful single-seat fighter carries a huge amount of prestige and the most famous firms – Blohm &Voss, Focke-Wulf , Heinkel, Junkers and Messerschmitt – jumped at the chance to create the successor to not only on the me 262 but perhaps also the Bf 109 and Fw 190 too. The engine was to be a Heinkel-Hirth HeS 011 turbojet and the companies were allowed two months to prepare their first designs, Blohm & Voss had two months more time.
On September 1944 the designs were presented at a meeting at Messerschmitt’s Oberammergau facility. It is not known which designed were presented by Messerschmitt and Heinkel, though it is likely that these were one of the earliest versions of the former’s Me P.1101, and the latter’s He P.1073 or a variant of it. Focke-Wulf put forward a twin-boom design Nr.280 it had been working on since early 1944. Blohm & Voss’s design (P.212) was apparently not ready and furthermore it was agreed that Junkers should also be allowed to submit a tender for the requirement.
On the last day of the meeting, a new requirement was suddenly and for most part unexpectedly issued for what would become the “Volksjäger” (Peoples Fighter). This called for a fighter powered by a single BMW 003 turbojet engine that could reach a maximum speed of 466 mph and have an endurance of 30 minutes at full throttle. It also had to be able to operate from poor airfields.
This urgent demand for new single-turbojet fighter designs that could be built in a hurry from low grade non-strategic materials effectively stalled work on the “1-TL-Jäger” competition for several months, particularly Blohm & Voss, Focke-Wulf, Heinkel and Junkers all hastily drafted entries for the “Volksjäger” contest.
The Heinkel He P.1073, originally designed before July 1944 as a fighter with two Junkers Jumo 004C turbojet-engines, one under the nose and one at its back but now altered to fly with just one Heinkel-Hirth HeS 011, was already close to meeting the “Volksjäger” specification. The Heinkel “Volksjäger”-design He P.1073.01.18 was dated from September 1944, just one day after the specification was issued. This only was possible because Heinkel’s design team had several different variants of the design on the drawing board. The documentation describes the He P.1073.01.18 as a “Kleinst-Jäger” (Midget Fighter) and states it is ”a simplification of the design with HeS 011”. It bears remarkable resemblance to what would become the Heinkel He 162 “Spatz” (Sparrow”) except the wings are simpler and both nose wheel and main gear retract forward into the fuselage. Heinkel’s design received a similarly lukewarm reaction, probably because it was based heavily on the company’s already known “1-TL-Jäger” project. But Heinkel’s representatives pointed out that with aircraft such as the Heinkel He 177 bomber no longer in production there was now spare capacity available at its capacious and well-equipped factories. There is some evidence that on September 23rd 1944 Hitler himself ordered the He P.1073 into mass production as Heinkel He 162.
The variant of the He P.1073 design that finally led to the definitive Heinkel He 162 “Volksjäger” is shown here. The design is dated back from September 10th, 1944 and shows the installation of the turbojet engine on the back. The wings are swept back at 35 degree, the tail plane had a positive dihedral and two fins. Under the fuselage on ventral starboard side a streamlined pannier was fitted holding a MK 108 machine canon and two MG 213C machine guns were oblique mounted in the front at both sides of the pilot’s seat. Work on the final version of the Heinkel “Volksjäger began on October 25th, 1944 and its maiden flight took place on December 6th that year (Ref.: Sharp, Dan: Luftwaffe. Secrets Jets of the Third Reich. Mortons Media Group Ltd, Horncastle, 2015).

Avro 671 Rota Mk. I, 529 Sqn RAF (RS Models)

TYPE: Autogyro

ACCOMMODATION: Pilot and passenger/observer

POWER PLANT: One Armstrong Siddeley Genet Major IA radial engine, rated at 140 hp

PERFORMANCE: 110 mph

COMMENT: The Avro 671 Rota Mk. I autogyro based on the Cierva C.30 designed by Juan de la Cierva in Spain and built under licence in England by A V Roe & Co Ltd.
Avro obtained the licence in 1934 and subsequently built 78 examples under their model designation, fitted with an Armstrong Siddely Genet Major IA (known in the RAF as the Civet 1) 7-cylinder radial engine producing 140 hp . The first production aircraft was delivered in July 1934.
The first production design in the series was the C.30A, a radial-engined autogyro with a three-blade, 37 ft rotor mounted on an aft-leaning tripod, the control column extending into the rear of the two cockpits. The engine was the five-cylinder, 105 hp Armstrong Siddely Genet Major I. The fabric-covered fuselage carried an unbraced tail plane, without elevators but with turned-up tips. The port side of the tail plane had an inverted aerofoil section to counter roll-axis torque produced by the propeller. As with most autogyros, a high vertical tail was precluded by the sagging resting rotor, so the dorsal fin was long and low, extending well aft of the tail plane like a fixed rudder and augmented by a ventral fin. The wide-track undercarriage had a pair of single, wire-braced legs and a small tail wheel was fitted. This model flew in April 1933. It was followed by four improved machines designated C.30P (P here for pre-production) which differed in having a four-legged pyramid rotor mounting and a reinforced undercarriage with three struts per side. The rotor could be folded rearwards for transport. The C.30P used the more powerful140 hp Armstrong Siddely Genet Major IA radial engine.
Twelve C.30A’s built by Avro for the Royal Air Force (RAF) entered service as the Avro 671 Rota Mk.I. The twelve were delivered between 1934 and 1935. They equipped the School of Army Co-operation at RAF Old Sarum near Salisbury. At least one RAF C.30A was on floats as a “Sea Rota” in January 1935
Many of the surviving civil aircraft were also taken into RAF service between 1939 and 1940. In 1940 they equipped 1448 Flt at RAF Duxford. Later they equipped 529 Sqn at RAF Halton on radar calibration work, disbanded in October 1945, the twelve survivors were sold on to civilian owners (Ref.: 24).

Messerschmitt Me 262 HG IV (Hochgeschwindigkeits Projekt IV, High-speed project IV), (Unicraft Models, Parts from Revell)

TYPE: High-speed research aircraft

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004C, rated at 1050 kp each or two Heinkel/Hirth HeS 011 turbojet engines, rated at 1,200 kp each

PERFORMANCE: High sub-sonic speed (estimated)

COMMENT: The Messerschmitt Me 262 HG IV („Hochgeschwindigkeits-Projekt IV“, „High-speed Project IV“) was a high-speed concept which would be based on the Messerschmitt Me 262 „Schwalbe“ („Swallow“). The design dates back to early 1940 when attempt were made to test the revolutionary turbojet driven aircraft at critical Mach numbers.
Several proposals were calculated on the drawing board and even one design realized:
The Messerschmitt Me 262 V9 HG I was flight tested in January 1944. During the course various aerodynamic improvements were introduced into a basic Me 262 aircraft. The leading edge of the inner wing as well as of the vertical tail was increased to 45 degree, the leading edge of the horizontal tail was swept back to 40 degree, a shallow, low-drag cockpit canopy was installed, and the muzzles were faired over. The highest speed attained by this experimental aircraft being 624 mph.
On the drawing board remained the Messerschmitt Me 262 HG II and Me 262 HG III, both designs in various subtypes with different wings, conventional as well as with “Butterfly”-type tail plane, different engine installation and air intake.
Finally, the Messerschmitt Me 262 HG IV was a basic Messerschmitt Me 262 aircraft with original wing section and low mounted nacelles, housing the turbojet engines, but an intensively modified fuselage similar to the Me 262 HG III/3. The cockpit was placed to the rear of the fuselage merging into the tail plane, fuel tanks and armament was set at the front of the aircraft.
All Messerschmitt Me 262 HG II, Me 262 HG III and Me 262 HGIV were never realized

Kugisho High-Speed Aircraft Project with DB 601A (Unicraft Models, Resin)

TYPE: High speed fighter project

ACCOMMODATION: Pilot only

POWER PLANT: One Daimler-Benz DB 601A liquid-cooled engine, rated at 1,159 hp

PERFORMANCE: No data available

COMMENT: Every aircraft creator seeks to reduce drag in their designs. The more drag, the slower the aircraft moves through the air due to the resistance. Drag cannot be completely removed from a design, but even in the early years of aviation various methods for minimizing drag were investigated and many different solutions were tried.
Not surprisingly, such applications were valued by those providing the military with aircraft and in Japan, prior to the outbreak of hostilities with the US, the Dai-lchi Kaigun Kok[ Gijutsu-sho (Yokosuka Naval Air Technical Arsenal, Kugisho) would study such efforts in an attempt to produce fast flying aircraft.
With the war clouds looming on the horizon, the seeds planted by the air racers of the 1920s and early 1930s were germinating in the aircraft used by the air forces of the major powers. Designs by Curtiss for the US Army Air Force were influenced by the Curtiss racers while the retractable landing gear of the 1920 Dayton Wright RB racer would become a hallmark of Grumman aircraft such as the F2F. In Great Britain, R. J. Mitchell would draw heavily from his experience designing Schneider Trophy racers to build the Supermarine Type 300 which would eventually evolve into the Supermarine Spitfire.
On 26 April 1939 German test pilot Fritz Wendel flew to a new world speed record of almost 469 mph with a Messerschmitt Me 209. The Me 209 was solely designed to break speed records and was a completely separate aircraft from the Messerschmitt Bf 109 that entered service with the German Luftwaffe at that time. It shared only its Daimler-Benz DB 601 liquid-cooled engine with the Bf 109.
Consequentially, Japan sought to produce racing aircraft and planes designed to beat world speed records. In 1938, a group of designers sought to produce a high-speed aircraft to challenge the world air speed record. Once war had broken out this aircraft, called the Ken lll, was soon taken over by the Imperial Japanese Army (IJA). Redesignated the Ki-78, its development was continued under Kawasaki. During this time, it may have been the Imperial Japanese Navy (IJN) who decided to conduct its own studies of high speed aircraft with Kugisho assigned the task of doing so. Whether the studies were initiated in response to the IJA’s own high-speed aircraft project is unknown but the prevalent aircraft design philosophy of both the IJN and the IJA prior to the war was of speed, agility and range at the expense of fire- power, durability and protection.
Kugisho examined over half a dozen aspects of aerodynamics in order to produce data on what would be needed to realize an aircraft capable of significant speed. One leading point of research was the main wings. The shape of a wing is one of the more critical aspects of aircraft design. Factors such as wing loading, expected air speeds, angles of attack and the intended use of the aircraft all influence how the wing is shaped. For high speeds, a low aspect ratio wing is often considered. Typically, these are short span wings with the benefits of higher maneuverability and less drag. In addition, having a backward sweep to the wing also lowers drag. The drag most associated with wings is termed induced drag, which is caused by wing tip vortices that change how the air flows over the wings. This change results in less and less lift which then requires a higher and higher angle of attack to compensate and, from this, induced drag results. Elliptical wings offer less induced drag than more conventional straight wings. However, low aspect ratio wings are more prone to larger vortices because they cannot be spread out across a longer wing.
Kugisho’s study on wing shapes was the likely result of testing various airfoils in a wind tunnel to determine their effectiveness and record the results. Another aspect Kugisho engineers reviewed were the merits and flaws of using either an inline or a radial engine and how each type reduced the form drag. In both cases the engineers drew up two concept aircraft and each made use of streamlining. Streamlining is the process of shaping an object, in this case, a fuselage, to increase its speed by reducing the sources of drag.
One concept used the German 1,159hp Daimler-Benz DB 601A, a 12-cylinder, inverted-V, liquid-cooled, inline engine. This engine would be license built for the IJN as the Aichi AEl Atsuta (the ‘A’ stood for Aichi, ‘E’ for liquid-cooled and ‘l’ for first liquid-cooled engine.  Atsuta was a holy shrine in Aichi Prefecture) and for the IJA as the Ha-40, before it was renamed the [Ha-60] 22.
The second concept aircraft (Kugisho High-Speed Aircraft Project with NK-1B) used a 1,000hp Nakajima NKlB Sakae 11 which was a 14-cylinder, air-cooled, radial engine. This engine was a license version of the French Gnome-Rhone l4K Mistral Major (in engine nomenclature, the ‘N’ was for Nakajima, ‘K’ for air-cooled, ‘1’as the first air-cooled engine, while the ‘B’ was for the second version of the NKl; Sakae means prosperity in Japanese).
Kugisho would use the same basic airframe for the engine study. It consisted of a well streamlined fuselage with the pilot mounted in a cockpit set behind the wing and just forward of the vertical stabilizer. This style was found in a number of racing aircraft such as the American GeeBee Rl and Geebee Z. Both aircraft used a standard tail-sitter configuration for the landing gear. The concept equipped with the DB 601A engine had a fuselage shape that was not unlike the Kawasaki Ki-61 Hien (“Swallow”, codenamed “Tony” by the Allies) which would appear in prototype form in December 1941 . The wings were mounted low on the fuselage. The fuselage appearance was due to the inverted-V engine which, by design, offered lower height, weight and length when compared to more conventional engines.
By contrast, the concept using the Nakajima NKlB had a more ovoid fuselage shape, the result of the height of the radial engine. To maintain the aerodynamic streamlining a large spinner was used. Also, in contrast to the DB 601A equipped design, the wings were mounted mid-fuselage.
Kugisho would not produce any direct prototype aircraft from either concept. lnstead, results of the various studies were likely kept available as reference for engineers to access as a means of obtaining data on the aerodynamic problem. Perhaps Kugisho in hindsight considered themselves fortunate to not have expended additional expense and effort in producing working prototypes given the failure of the IJA’s Kawasaki Ki-78, a program that lingered on into 1944 and never met its design goals (Ref.: Dyer III, Edwin M.: Japanese Secret Projects, Experimental Aircraft of the IJA and IJN 1939-1945, Midland Publishing, Hersham, U.K., 2010).

Dornier Do 335A-12 “Ameisenbär” (Anteater”), (Dragon)

TYPE: Trainer aircraft

ACCOMMODATION: Pilot and Instructor

POWER PLANT: Two Daimler-Benz DB 603A-2, rated at 1,726 hp each

PERFORMANCE: 430 mph at 17,400 ft

COMMENT: The Dornier Do 335 “Pfeil” (“Arrow”) was a WW II heavy fighter built by the Dornier company. The two-seater trainer version was unofficially called “Ameisenbär (“Anteater”). The Do 335s performance was much better than other twin-engine designs due to its unique push-pull configuration and the lower aerodynamic drag of the in-line alignment of the two engines. It was Germany’s Luftwaffe fastest piston-engine aircraft of World War II. The Luftwaffe was desperate to get the design into operational use, but delays in engine deliveries meant that only a handful were delivered before the war ended.
The Dornier Do 335 V1 first prototype flew for the first time on October 1943. However, several problems during the initial flight of the Do 335 would continue to plague the aircraft through most of its short history. Issues were found with the weak landing gear and with the main gear’s wheel well doors, resulting in them being removed for the remainder of the V1’s test flights. The Do 335 V1 made 27 flights, flown by three different pilots. During these test flights the second prototype Do 335 V2 was completed and made its first flight on end December 1943. New to the V2 were upgraded DB 603A-2 engines, and several refinements learned from the test flights of the V1 as well as further wind tunnel testing.
In early 1944 the Do 335 was scheduled to begin mass construction, with the initial order of 120 preproduction aircraft to be manufactured by DWF (Dornier-Werke Friedrichshafen) to be completed no later than March 1946. This number included a number of bombers, destroyers (heavy fighters), and several yet to be developed variants. At the same time, DWM (Dornier-Werke München) was scheduled to build over 2000 Do 335s in various models, due for delivery in March 1946 as well.
The first preproduction Dornier Do 335A-0s were delivered in July 1944 to the “Erprobungskommando 335” (“Proving detachment 335”) formed for service evaluation purposes.
On May 1944, Hitler, as part of the developing “Jägernotprogramm” (Emergency Fighter Program) directive, which took effect on July that year, ordered maximum priority to be given to Do 335 production. The main production line was intended to be at Manzell, but bombing raids in March destroyed the tooling and forced Dornier to set up a new line at Oberpfaffenhofen.
Among the different variants of the Do 335 under construction were two further two-seat prototypes, the Do 335 V11 and V12, these being respectively prototypes for the Daimler-Benz DB 603A-2-powered Do 335A-10 and DB 603E-1-powered Do 335A-12 dual-control conversion trainer. Having a similar raised second cockpit inserted aft and above the normal cockpit, the Do 335A-10 was equipped with full instrumentation and controls and was occupied by the instructor. The first aircraft were delivered without armament, but similar armament to that of the Do 335A-1 was specified for production models which were interspersed on the Do 335A-1 assembly line, and the genuine production aircraft was, in fact, a Do 335A-12 trainer.
At least 16 prototype Do 335s were known to have flown (V1–V12, and Muster-series prototypes M13–M17) on a number of DB603 engine subtypes including the DB 603A, A-2, G-0, E and E-1. The first preproduction Do 335A-0s were delivered in July 1944. Approximately 22 preproduction aircraft were thought to have been completed and flown before the end of the war including approximately 11 A-0s converted to A-11s for training purposes.
When U.S. forces overran Dornier’s Oberpfaffenhofen factory only 11 Do 335A-1 single-seat fighter bombers and two Do 335A-12 conversion trainers had been completed, but a further nine A-1s, four A-4s and two A-12s were in final assembly, and components and assemblies for nearly 70 additional aircraft had been completed. Production of the Do 335A-6 night and all-weather fighter had been transferred to the Heinkel factory at Vienna, but despite high priority allocated to the program, circumstances prevented the necessary jigs and tools being assembled (Ref: 7, 12).

Lavochkin La-7 (Italeri)

TYPE: Fighter aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Shvetsov Ash-82FN air-cooled radial engine, rated at 1,850 hp

PERFORMANCE: 411 mph at 19,685 ft

COMMENT: The Lavochkin La-7 was a piston-engine single-seat Soviet fighter aircraft developed during WW II by the Lavochkin Design Bureau. It was a development and refinement of the Lavochkin La-5, and the last in a family of aircraft that had begun with the Lavochkin-Gorbunov-Gudkov LaGG-3 in 1938. Its first flight was in early 1944 and it entered service with the Soviet Air Forces later in the year. The La-7 was felt by its pilots to be at least the equal of any German piston-engined fighter. It was phased out in 1947 by the Soviet Air Force.
By 1943, the La-5 had become a mainstay of the Soviet Air Forces, yet both its head designer, Semyon Lavochkin, as well as the engineers at the TsAGI (Central Aerohydronamics Institute), felt that it could be improved upon. TsAGI refined earlier studies of aerodynamic improvements to the La-5 airframe in mid-1943 and modified Lavochkin La-5FN to evaluate the changes. These included complete sealing of the engine cowling, rearrangement of the wing center section to accommodate the oil cooler and the relocation of the engine air intake from the top of the cowling to the bottom to improve the pilot’s view.
The aircraft was evaluated between December 1943 and February 1944 and proved to have exceptional performance. Using the same engine as the standard La-5FN had a top speed of 425 mph at a height of 20,180 ft, some 40 mph faster than the production La-5FN. It took 5.2 minutes to climb to 16,404 ft. It was faster at low to medium altitudes than the La-5 that used the more powerful prototype Shvetsov M-71 engine.
Lavochkin had been monitoring TsAGI’s improvements and began construction in January 1944 of an improved version of the La-5 that incorporated them as well as lighter, but stronger, metal wing spars to save weight. The La-5, as well as its predecessors, had been built mostly of wood to conserve strategic materials such as aircraft alloys. With Soviet strategists now confident that supplies of these alloys were unlikely to become a problem, Lavochkin was now able to replace some wooden parts with alloy components. In addition Lavochkin made a number of other changes that differed from La-5FN. The engine air intake was moved from the bottom of the engine cowling to the wing roots, the wing/fuselage fillets were streamlined, each engine cylinder was provided with its own exhaust pipe, the engine cowling covers were reduced in number, a rollbar was added to the cockpit, longer shock struts were fitted for the main landing gear while that for the tail wheel was shortened, an improved gunsight was installed, and a new propeller was fitted. Three prototype 20 mm Berezin B-20 autocannon were mounted in the engine cowling, firing through the propeller, arming the 1944 standard-setter.
The prototype only made nine test flights in February and March 1944 before testing had to be suspended after two engine failures, but quickly proved itself to be the near-equal of the La-5FN. It was 180 kilograms lighter than the earlier aircraft, which allowed the La-7 to outclimb the other aircraft. However it was 20.5 mph slower at sea level, but only 2.5 mph slower at 19,685 ft. The flight tests validated Lavochkin’s modifications and it was ordered into production under the designation of La-7, although the B-20 cannon were not yet ready for production and the production La-7 retained the two 20-mm ShVAK cannon armament of the La-5.
Five La-7s were built in March by Factory Nr. 381 in Moscow and three of these were accepted by the Air Force that same month. The Moscow factory was the fastest to complete transition over to La-7 production and the last La-5FN was built there in May 1944. Factory Nr. 21 in Gorky was considerably slower to make the change as it did not exhaust its stock of wooden La-5 wings until October. The quality of the early production aircraft was significantly less than the prototype.
Combat trials began in mid-September 1944 and were generally very positive. However four aircraft were lost to engine failures and the engines suffered from numerous lesser problems, despite its satisfactory service in the La-5FN. One cause was the lower position of the engine air intakes in the wing roots of the La-7 which caused the engine to ingest sand and dust. One batch of flawed wings was built and caused six accidents, four of them fatal, in October which caused the fighter to be grounded until the cause was determined to be a defect in the wing spar.
Production of the first aircraft fitted with three B-20 cannon began in January 1945 when 74 were delivered. These aircraft were 65 kilograms heavier than those aircraft with the two ShVAK guns, but the level speed was slightly improved over the original aircraft. However, the time to climb to 16,404 ft increased by two-tenths of a second over the older model. More than 2000 aircraft were delivered before the war’s end, most by Zavod Nr. 21.
Production of the Lavochkin La-7 amounted to 5,753 aircraft, plus 584 La-7UTI trainers. The follow-up model, the Lavochkin La-9, despite its outward similarity, was a completely new design (Ref.: 24).

Messerschmitt Me 209 V1 (Huma Models)

TYPE: Racing aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Daimler-Benz DB 601 ARJ liquid-cooled engine, rated at 1,775 hp

PERFORMANCE: 469 mph

COMMENT: The Messerschmitt Me 209 V1 was a single-engine racing aircraft which was designed for and succeeded at breaking speed records.
The designation Me 209 was used for two separate projects during World War II. The first was a record-setting, single-engined race aircraft, for which little or no consideration was given to adaptation for combat. The second Me 209  V4 was a proposal for a follow-up to the highly successful Messerschmitt Bf 109 which served as the Luftwaffe’s primary fighter throughout World War II.
Designed in 1937, the Me 209 V1 was a completely separate aircraft from the Messerschmitt Bf 109, solely designed to break speed records. It shared only its Daimler-Benz DB 601 engine with the Bf 109, which in the Me 209 was equipped with steam cooling. Willy Messerschmitt designed the small aircraft with a cockpit placed far back along the fuselage just in front of its unique cross-shaped tail section. Unlike the Bf 109, the Me 209 featured a wide track, inwardly-retracting undercarriage mounted in the wing section.
The aircraft achieved its purpose when test pilot Fritz Wendel flew it to a new world speed record of almost 469 mph on 26 April 1939, bearing the German civil registration D-INJR. This record was not officially broken by another piston-engined aircraft until 16 August 1969 by Darry Greenamyer’s highly modified Conquest F8F “Bearcat”.
The Me 209 V1’s speed record was itself shattered in terms of absolute speed, eighteen months later by Heini Dittmar, flying another Messerschmitt aircraft design, the Messerschmitt Me 163A V4 rocket fighter prototype to a 624 mph record in October 1941.
The idea of adapting the Messerschmitt Me 209 racer to the fighter role gained momentum when, during the Battle of Britain, the Messerschmitt Bf (Me)109 failed to gain superiority over the Royal Air Force’s Supermarine “Spitfire”. The little record-setter, however, was not up to the task of air combat. Its wings were almost completely occupied by the engine’s liquid cooling system and therefore prohibited conventional installation of armament. The aircraft also proved difficult to fly and extremely hard to control on the ground. Nevertheless, the Messerschmitt team made several attempts to improve the aircraft’s performance by giving it longer wings, a taller vertical stabilizer, and installing two synchronized 7.92 mm MG 17 in the engine cowling. Several modifications on the aircraft, designated Messerschmitt Me 209 V4, however, added so much weight that the aircraft ended up slower than the contemporary Bf 109E. As a result the complete Messerschmitt Me 209 project was soon cancelled, but was revived later in form of the Messerschmitt Me 209 V5. (Ref.: 24).

Kokukyoko “Syusuishiki Kayaku ”, (“Autumn Water”), Unicraft Models, Resin

TYPE: Rammer aircraft

ACCOMMODATION: Pilot only

POWER PLANT: Four Type 4 Mk. 1 Model 20 solid fuel rockets with a combined 1,102 kp thrust

PERFORMANCE: 699 mph (estimated)

COMMENT: The practice of ramming, in Japanese “tai-atari”, which literally means “body crashing”, was not unique to Japan. During WW II the deliberate ramming of one aircraft by another aircraft was performed by the Russians, Germans as well as Japanese and all made ramming a part of their war doctrine.
The Japanese would use aircraft already in operational service for ramming attacks such as that Kawasaki Ki-45 and even stripped down Kawasaki Ki-61 “Hein” fighters. It was long thought that Japan never developed a dedicated rammer aircraft of its own but this is no longer the case. Recently discovered in the archives of the Japanese National Institute for Defense Studies is just such a project.
The aircraft was a joint venture between the Imperial Japanese Army (IJA) and the Imperial Japanese Navy (IJN), something that occurred with more regularity towards the closing stage of WW II. The design was based on the “Syusuishiki Kayaku” Rocketto (“Autumn Water”-type ram attack rocket), a project started in March 1945 for an unmanned, remote controlled anti-bomber missile. The plan was to ground launch the missile, guide it remotely towards the target, engage the target via ramming, and then recover the missile (if it survived the collision) for reuse.
Design work was carried out by the Kokukyoko (the Aeronautical Bureau) and, although a mockup was completed, the war ended before finalized production plans could be completed, let alone the missile ever being tested.
The piloted version used much the same design as the missile and was a small, tailless aircraft featuring low mounted 45′ swept wings. The fuselage was bullet shaped with a large vertical stabilizer into which the cockpit was blended. Located in the back of the fuselage were four Type 4 Mark 1 Model 20 rockets, the same as those used on the Kugisho MXYT “Oka” which on such a small aircraft pushed the maximum speed to an estimated 699 mph or just over Mach 0.91. lt is unknown if the design had swept wings because the designers  understood the principles in relation to overcoming compressibility problem at transonic speeds, or if the shape was chosen as a means to provide an angled cutting surface to facilitate ramming attacks, or as a drag reducing planform. The wings were strengthened to withstand the high impact forces experienced when striking the enemy bomber. Even though the rammer could rely on speed as a defense when under power, it still had to contend with the defensive armament of the B-29 and thought the pilot had some measure of armor plating and bulletproof glass to protect him. The aircraft was certainly capable of gliding back to base to be refueled and relaunched once it had conducted its attacks. Given the small size of the plane, no landing gear was fitted. As such, it is likely the underside of the fuselage was reinforced or had a skid installed. How it was to be launched is unknown – it could have been towed aloft, catapult launched or perhaps even vertically launched.
In a ram attack, typically the tail would be targeted because the loss of the tail assembly would send the bomber out of control. Striking the wings and engines was another focus of ramming attacks. Finally, the aircraft fuselage was the other key area to strike. The probable mission profile of the rammer flying from a ground base would include being positioned within very close proximity of likely bombing targets. With the short burn time of the rockets (8-10 seconds) the aircraft’s operational radius would have been very limited. After launching, as bombers came into range the pilot would attempt to ram into either the tail or wing of the target with the objective of severing it from the fuselage. If enough speed momentum remained after the initial hit, another ram attack would be made. Should the aircraft remain in flying condition and if the pilot did not elect to ram his entire plane into a target, he would return to base where the rockets would be replaced. If the bombers were still close by, he could fly another sortie. If the rammer was towed into the air, the rockets would most likely have been fired on approach and again after hitting a target. This would provide enough power to grant a second pass with sufficient speed to allow for significant damage to be inflicted on the bomber when it struck.
However, the Kokukyoko “Syusuishiki Kayaku” would remain a paper project only. It is unclear if the design was to be the definitive rammer model or simply a proposed concept (Ref.: Dyer III, Edwin M.: Japanese Secret Projects, Experimental Aircraft of the IJA and IJN 1939-1945, Midland Publishing, Hersham, U.K., 2010).

Junkers Ju 352 “Herkules”, (“Hercules”), (Airmodel, vacu-formed)

TYPE: Transport aircraft

ACCOMMODATION: Crew of three to four

POWER PLANT: Three BMW Bramo 323 R-2 Fafnir radial engine, rated at 1,184 hp with MW-50 each

PERFORMANCE: 230 mph at 16,565 ft

COMMENT: The Junkers Ju 352 “Herkules” (“Hercules”) was a German WW II transport aircraft that was developed from the Junkers Ju 252.
During the late spring of 1942, the Junkers-Dessau project office was instructed by the Reichsluftfahrtministerium (RLM, Reich Air Ministry) to investigate the possibility of redesigning the structure of the Junkers Ju 252 transport to make maximum use of non-strategic materials, simultaneously replacing the Junkers Jumo 211F engines of the Ju 252 (production of which could barely keep pace with the demands of combat aircraft) with BMW Bramo 323R radial engines. The result followed closely the aerodynamic design of the Ju 252 but was an entirely new aircraft. The wing of the Ju 352 was similar in outline to that of the Ju 252 but, mounted further aft on the fuselage, was entirely of wooden construction.
The Ju 352 also had a similar hydraulically-operated “Trapoklappe” (“Transportklappe”, rear loading ramp) to that of the Ju 252. The ramp allowed the loading of vehicles or freight into the cargo hold while holding the fuselage level. Theoretically it was possible for any wheeled vehicle up to the size of a large “Kübelwagen” to drive up the Trapoklappe into the freight hold, although in practice it proved necessary to winch the vehicle into the hold by means of a manually-operated block- and tackle arrangement owing to the risk of damaging the structure.
In general, the Ju 352 was considered a major improvement over the original Junkers Ju 52 but noticeably inferior to the Junkers Ju 252. Deliveries of the Ju 352 had only just begun to get into their stride when, during the summer of 1944, the worsening war situation resulted in the decision to abandon further production of transport aircraft. In September the last two Ju 352As rolled off the assembly line, 10 pre-production Ju 352s and 33 production Ju 352s having been manufactured. Several developments of the basic design were proposed before production was halted, these including the Ju 352B with more powerful engines and increased defensive armament (Ref.: 24).