Category Archives: Projects

Projects

Blohm & Voss Ae 607 (RS Models, Resin)

TYPE: Experimental flying wing aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel-Hirth HeS 011 turbojet, rated at 1,200 kp thrust

PERFORMANCE: Unknown

COMMENT: The Blohm & Voss Ae 607 was a turbojet-powered flying wing design drawn up by Blohm & Voss in 1945. Very little is known about it and its existence was only confirmed end of the last century.
Early in 1945, a Blohm & Voss aircraft designer called Thieme began work on Drawing Number Ae 607 within the standard drawing numbering system at B&V and labelled it „Nurflügel-TL-Jäger“ („All-wing jet fighter“). His design for a jet fighter was radically different from anything that B&V had done before: A flying wing, it approximated to a 45° delta planform.
An all-wing design, the centre section has a V-shaped lower profile deepening its keel and is sharply tapered both front and rear, while the outer sections are sharply swept at approximately 45° and tapered, giving the leading edge a sweep greater than 45° and the trailing edge an M-shaped outline from above. The wing tips are turned down, giving them a slight anhedral.
A turbojet engine duct runs down the centre, with the Heinkel-Hirth HeS 011 engine installed towards the rear. A small tail fin is placed above the jet exhaust duct, while the pilot’s cockpit is set just in front of the engine, but still well aft, and is offset to one side to give the pilot room alongside the intake duct. It is covered by a teardrop canopy. Two small, low aspect ratio and untapered canard foreplanes sweep forward from either side of the nose intake.
The undercarriage comprises main wheels retracting outwards and twin tailwheels retracting on either side of the engine exhaust duct. On the ground, it sits with a marked nose-up attitude presumably to keep the air intake well away from any surface debris while take-off. Estimated performance as well as it’s conceptual formulation is unknown. The Blohm & Voss Ae 607 „Nurflügel-TL-Jäger“ never received a „P“ number (Project number) and was probably only intended to showcase ideas for solving particular problems facing designers when designing on a layout for fighters. The authenticity of the „Nurflügel-TL-Jäger“ has been questioned for years but, oddly enough, it has proven to be an entirely genuine wartime design (Ref.: 24).

Heinkel He P. 1078C (Frank Airmodel, Resin)

TYPE: Interceptor

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel/Hirth HeS 011 turbojet engine, rated at 1,200 kp thrust

PERFORMANCE: 480 mph at 32,800 ft

COMMENT: The Heinkel He P.1078 was a single-seat interceptor developed for the Luftwaffe by Heinkel aircraft manufacturing company under the  „Jägernotprogramm“ (Emergency Fighter Programm) during the closing stage of the Third Reich.
Germany’s Emergency Fighter Program was enacted in the middle of July in 1944 in response to the Allied bombing offensive taking out critical German war-making capabilities. The new aircraft was intended to have superior performance in order to deal with the expected high altitude threats such as the Boeing B-29 Superfortress, but only had a 30-minute endurance figure.
The high-altitude fighter designs brought forward by other German aircraft makers were the Messerschmitt Me P.1101, Focke-Wulf Ta 183 „Huckebein“, Blohm & Voss Bv P.212, and Junkers EF 128.
The Heinkel Company was a competitor, too, and offered ist He P.1078 project in three quite different variants. All of them were a single-seat fighters with polyhedral swept wings. The wings were swept back at 40 degrees and included wood in their construction. All of the projected aircraft had the wing tips angled downwards and all of them would be powered by a single Heinkel/Hirth HeS 011 turbojet.
The Heinkel He P.1078A was a turbojet-powered interceptor. It was the most conventional-looking of the three designs submitted for it was the only one having a tail. Its armament was two MK 108 cannons, as in the following two variants.
The Heinkel He P.1078B was a tailles asymmetric jet-powered interceptor with a short fuselage in which the air intake of the engine was located in the middle between two gondolas. The cockpit was located on the gondola of the left side, while the right side gondola contained the front undercarriage leg and cannon armament.
Finally the Heinkel He P.1078C was a tailless interceptor project similar to the He P.1078B but with a single short fuselage. Both the He P.1078B and He P.1078C had wing tips angled downwards at a more pronounced angle than the He P.1078A.
To keep production costs down and expedite mass production, the Heinkel He P.1078C design was relatively simple in nature, utilizing wood wherever possible. The metal fuselage sported a length no longer than 17 feet and contained the armored cockpit, armament and relatively large single engine fitting, fuel was to be housed in the wings. Wingspan was just under 30 feet and the design as a whole just topped 7 feet, 8 inches in height. The armament would have consisted of two MK 108 cannons fitted to either side of the nose section. The nose section itself was rather short and acted as the air intake to aspirate the turbojet engine buried further aft in the design. The opening was rectangular in nature and conformed well to the fuselage’s square appearance when viewed in the forward profile. The engine exhausted at the rear through a conventional exhaust ring. The cockpit was held well-forward in the design with the pilot seated under a small canopy allowing for limited viewing ahead and to the sides (the rear was obstructed by way of a short fuselage spine). The undercarriage was fully retractable and would have consisted of three landing gear legs: two main legs at amidships and a nose landing gear leg – all were single-wheeled installations. When at rest, this arrangement would have given the He P.0178C a distinct “nose-up” appearance, in effect perhaps promoting quicker take-offs with the increased wing drag at speed. Since the turbojet-powered fighter would have been operating at high altitudes, the cockpit was to be fully pressurized and equipped withan ejection seat.
Perhaps the most identifiable portion of the He P.1078Cs design was its wings. The assemblies were fitted high against the fuselage sides and extensively swept rearwards. Each wing was cranked upwards from fuselage centerline up to roughly three-quarters out and then capped with a short wing piece cranked sharply downwards. The reason for this design was largely related to aerodynamic principles that were still being researched at the time and the result was to have combated stress effects on the wings at high speeds. Ernst Heinkel was convinced of their ability to provide for increased maneuvering and agility during dogfights. It bears note that there were no horizontal tailplanes in the Heinkel design and the entire internal fuel load for the thirsty turbojet engine was to be stored across both of the wings. However, the wings were not armored which unduly would have exposed them to enemy fire even of the slightest degree.
After being subject to severe criticism, the project was cancelled by Heinkel at the end of February 1945 (Ref: 17, 22, 24).

Focke-Wulf Fighter Project II (MP-Models)

TYPE: Fighter, interceptor

ACCOMMODATION: Pilot only

POWER PLANT: One Junkers Jumo 004B turbojet engine, rated at 950 kp thrust

PERFORMANCE: 541 mph at 13,130 ft

COMMENT: The earliest known Focke-Wulf attempt at a single-turbojet fighter, shown in a drawing dated November 1942, the Focke-Wulf Fw 190TL, had involved simply bolting a very basic in-house designed turbojet Fw T.1 to the front of an operational Fw 190.
On January 1943, company aerodynamicist J. C. Rotta offered a report entitled “Fundamentals For The Design of a Turbojet Fighter” which looked at how a large turbojet fighter ought to be, what sort of shape and layout would be best, what turbojet engines could be fitted and how, what the advantages and disadvantages of piston engines and turbojet engines were and what aerodynamic issues were.
To illustrate his points, Rotta came up with a trio of remarkably foresighted designs:

Fighter with turbojet engine BMW 003, P 3302 Design 1,
Fighter with turbojet engine BMW 003, P 3302 Design2, and
Fighter with turbojet engine Junkers Jumo 004.

Each of the three designs had its turbojet engine mounted on its back, just as the Heinkel He 162 would be configured 20 months later. The first and third designs also had forward-swept wings and backward-swept V-tails. The second BMW powered P 3302 design had unswept wings and an unswept V-tail.
However, Focke-Wulf’s design team seem to have completely ignored Rotta’s ideas when they actually started work on a series of single-seat, single-engine turbojet fighters. A report from August 1944 charts the team’s progress through seven different designs.
The first of these, dated March, 1943, was a tail-sitter based on a Fw 190 but with the cockpit relocated to the nose in place of the familiar BMW 801 piston engine, with the turbojet positioned directly below. But with this arrangement no satisfactory rolling properties were to be expected and there was also the risk of burning the airfield surface.
The second design from June, 1943, seems th have been more highly regarded and had its own separate “Baubeschreibung” (Construction description) number, the closest thing Focke-Wulf had to a “P” designation.
The wing was mounted mid-fuselage and had a slight sweep on the leading edge and straight trailing edges, the tailplane was similar to the Fw 190. The design had a tricycle undercarriage and a Junkers Jumo 004B turbojet engine was positioned more centrally under the fuselage. The cockpit was heavily protected by armor of varying thicknesses. Armament was to be two MK 108 (70 rounds each) or MK 103 30mm cannon in the fuselage nose and two MG 151/20 20mm cannon (175 rounds each) in the wing roots.
The main advantage of positioning the turbojet engine under the fuselage was to facilitate maintenance, but there were several bigger disadvantages to this design, such as the nose wheel blocking the intake on take-off and landing, objects being sucked into the air intake since it was so close to the ground. and the damage or destruction of the turbojet engine in case of a belly landing.
Finally, this design was rejected.
As far as the other five different designs are concerned.  Two oft them were basis for the later Focke-Wulf twin-boom Fighter Projekt VIII „Flitzer“ („Streaker“) and  swept-wing, high-mounted tailplane featured Focke-Wulf  interceptor Ta 183 „Huckebein“ (Ref: 17, Uhr, D. and D. Sharp: „Luftwaffe:Secret Projects Profile“, Mortons Media Group Ltd., Horncastle, U.K., 2018).

Messerschmitt Me 609 (Huma-Models)

TYPE: Fighter, Fighter bomber

ACCOMMODATION: Pilot only

POWER PLANT: Two Daimler-Benz DB 603 liquid-cooled engines, rated at 1,726 hp each

PERFORMANCE: 472 mph (estimated)

COMMENT: The Messerschmitt Me 609 was a short-lived WW II German project which joined two fuselages of the Messerschmitt Me 309 fighter prototype together to form a heavy fighter.
The project was initiated in response to a 1941 RLM (Reich Air Ministry) requirement for a new “Zerstörer” (destroyer, or heavy fighter) to replace the Messerschmitt Bf 110 in a minimum time and with a minimum of new parts The new design would use components from existing aircraft, thus not disrupting existing production. After the cancellation of the Messerschmitt Me 309 project in 1943, work was continued using it as a basis for other designs. One of these reworked designs was for the Me 509; another was for the 609, which was basically two Me 309 fuselages joined with a new center wing section. Messerschmitt was also working on and had completed a twin-fuselage Bf 109, known as the Me109Z, but the prototype was destroyed before flight testing.
Two Me 309 fuselages were to be joined with a constant chord center wing section, into which two inboard landing gears retracted. The outboard landing gears were resigned, two nose wheels retracted to the rear and rotating 90 degrees to lie flat beneath the engines. This resulted in an unusual four-wheel arrangement.  Power was to be supplied by two Daimler Benz 603 or 605 12 cylinder inverted V liquid -cooled engines. The pilot sat in a cockpit located in the port fuselage, with the starboard cockpit canopy being faired over.
Two versions were envisioned: a heavy fighter (“Zerstörer”) and a high-speed bomber (“Schnellbomber”, fast bomber). In the fighter version, two MK 108 30 mm cannon and two MK 103 30mm cannon were projected as the armament, with a provision for two additional MK 108 30mm cannon mounted beneath the center wing section or under the outer wing sections. In addition, either one SC 500 or two SC 250 bombs could be carried, also beneath the center wing section. The fast bomber version would have reduced armament, with only two MK 108 30mm cannon were to be installed. Extra fuel (1500 kg) could be carried in the faired over starboard cockpit, and the bomb load was to consist of two SC 1000 bombs which were carried beneath each fuselage.
Finally, a two seater night fighter variant was envisioned with FuG 220 “Lichtenstein SN-2” antennas mounted at the outer wings. The pilot sat in the port and the radar operator in the starboard fuselage.
Even though it was calculated that many components of the Me 309 could be used (fuselage, engines, equipment, 80% of the wings), by the time this design began to jell, the Messerschmitt Me 262 turbojet fighter was proving to be the plane of the future, and could take over all roles for which the Me 609 was designed. Thus, the Me 609 project was no longer pursued after 1944 (Ref.: 24).

Messerschmitt “Projekt Wespe II” (Project Wasp II), (Unicraft Models, Resin)

TYPE: Short-range fighter, fighter bomber

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel/Hirth HeS 011 turbojet engine, rated at 1,300 kp thrust

PERFORMANCE: No data available

COMMENT: This late WW II Messerschmitt „Projekt Wespe” (Wasp) is mostly unknown, and information on it is incomplete. Two seperate fuselages were designed for the „Wespe”:
Design I had the cockpit located midway along the fuselage, and the single He S 011 jet engine was located at the rear and was fed by a long air duct. A long tapering single fin and rudder was chosen, with the tail planes located about halfway up.
Design II had the cockpit located far forward on the fuselage, and the single He S 011 turbojet was mounted mid fuselage. It was fed by an air duct which wrapped under the forward fuselage, and exhausted below a tail boom with a V- Tail unit.
Both designs used a tricycle landing gear arrangement, with the main gear retracting inwards from the wing and the front gear retracting forwards. No armament was specified, but at this stage in the war two MK 108 30mm cannon would probably have been fitted. Priority for both designs was the use of non-strategic material as much as possible, reduction of time for maintenance and adequate flying characteristics (Ref.: 17).

Heinkel He P.1073.09-44 (Revell Models, Parts scratchbuilt)

TYPE: Fighter project, forerunner of the Heinkel He 162

ACCOMMODATION: pilot only

POWER PLANT:  one Heinkel-Hirth HeS 011 turbojet engine, rated at 1.300 kp thrust

PERFORMANCE: 615 mph in 19615 ft

COMMENT: The summer 1944 saw limitations of the Messerschmitt Me 262 becoming readily apparent. The basic design predated the war. It was heavy and expensive, and required to precious turbojet engines. A cheap high-performance replacement was needed so in July 1944 the RLM issued a requirement for a new single-turbojet high-performance fighter, known as the “1-TL-Jäger”. Germany’s aircraft companies were quick to realise that this was potentially the most important competition in which they had so far had the opportunity to participate. Designing a successful single-seat fighter carries a huge amount of prestige and the most famous firms – Blohm &Voss, Focke-Wulf , Heinkel, Junkers and Messerschmitt – jumped at the chance to create the successor to not only on the me 262 but perhaps also the Bf 109 and Fw 190 too. The engine was to be a Heinkel-Hirth HeS 011 turbojet and the companies were allowed two months to prepare their first designs, Blohm & Voss had two months more time.
On September 1944 the designs were presented at a meeting at Messerschmitt’s Oberammergau facility. It is not known which designed were presented by Messerschmitt and Heinkel, though it is likely that these were one of the earliest versions of the former’s Me P.1101, and the latter’s He P.1073 or a variant of it. Focke-Wulf put forward a twin-boom design Nr.280 it had been working on since early 1944. Blohm & Voss’s design (P.212) was apparently not ready and furthermore it was agreed that Junkers should also be allowed to submit a tender for the requirement.
On the last day of the meeting, a new requirement was suddenly and for most part unexpectedly issued for what would become the “Volksjäger” (Peoples Fighter). This called for a fighter powered by a single BMW 003 turbojet engine that could reach a maximum speed of 466 mph and have an endurance of 30 minutes at full throttle. It also had to be able to operate from poor airfields.
This urgent demand for new single-turbojet fighter designs that could be built in a hurry from low grade non-strategic materials effectively stalled work on the “1-TL-Jäger” competition for several months, particularly Blohm & Voss, Focke-Wulf, Heinkel and Junkers all hastily drafted entries for the “Volksjäger” contest.
The Heinkel He P.1073, originally designed before July 1944 as a fighter with two Junkers Jumo 004C turbojet-engines, one under the nose and one at its back but now altered to fly with just one Heinkel-Hirth HeS 011, was already close to meeting the “Volksjäger” specification. The Heinkel “Volksjäger”-design He P.1073.01.18 was dated from September 1944, just one day after the specification was issued. This only was possible because Heinkel’s design team had several different variants of the design on the drawing board. The documentation describes the He P.1073.01.18 as a “Kleinst-Jäger” (Midget Fighter) and states it is ”a simplification of the design with HeS 011”. It bears remarkable resemblance to what would become the Heinkel He 162 “Spatz” (Sparrow”) except the wings are simpler and both nose wheel and main gear retract forward into the fuselage. Heinkel’s design received a similarly lukewarm reaction, probably because it was based heavily on the company’s already known “1-TL-Jäger” project. But Heinkel’s representatives pointed out that with aircraft such as the Heinkel He 177 bomber no longer in production there was now spare capacity available at its capacious and well-equipped factories. There is some evidence that on September 23rd 1944 Hitler himself ordered the He P.1073 into mass production as Heinkel He 162.
The variant of the He P.1073 design that finally led to the definitive Heinkel He 162 “Volksjäger” is shown here. The design is dated back from September 10th, 1944 and shows the installation of the turbojet engine on the back. The wings are swept back at 35 degree, the tail plane had a positive dihedral and two fins. Under the fuselage on ventral starboard side a streamlined pannier was fitted holding a MK 108 machine canon and two MG 213C machine guns were oblique mounted in the front at both sides of the pilot’s seat. Work on the final version of the Heinkel “Volksjäger began on October 25th, 1944 and its maiden flight took place on December 6th that year (Ref.: Sharp, Dan: Luftwaffe. Secrets Jets of the Third Reich. Mortons Media Group Ltd, Horncastle, 2015).

Messerschmitt Me 262 HG IV (Hochgeschwindigkeits Projekt IV, High-speed project IV), (Unicraft Models, Parts from Revell)

TYPE: High-speed research aircraft

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004C, rated at 1050 kp each or two Heinkel/Hirth HeS 011 turbojet engines, rated at 1,200 kp each

PERFORMANCE: High sub-sonic speed (estimated)

COMMENT: The Messerschmitt Me 262 HG IV („Hochgeschwindigkeits-Projekt IV“, „High-speed Project IV“) was a high-speed concept which would be based on the Messerschmitt Me 262 „Schwalbe“ („Swallow“). The design dates back to early 1940 when attempt were made to test the revolutionary turbojet driven aircraft at critical Mach numbers.
Several proposals were calculated on the drawing board and even one design realized:
The Messerschmitt Me 262 V9 HG I was flight tested in January 1944. During the course various aerodynamic improvements were introduced into a basic Me 262 aircraft. The leading edge of the inner wing as well as of the vertical tail was increased to 45 degree, the leading edge of the horizontal tail was swept back to 40 degree, a shallow, low-drag cockpit canopy was installed, and the muzzles were faired over. The highest speed attained by this experimental aircraft being 624 mph.
On the drawing board remained the Messerschmitt Me 262 HG II and Me 262 HG III, both designs in various subtypes with different wings, conventional as well as with “Butterfly”-type tail plane, different engine installation and air intake.
Finally, the Messerschmitt Me 262 HG IV was a basic Messerschmitt Me 262 aircraft with original wing section and low mounted nacelles, housing the turbojet engines, but an intensively modified fuselage similar to the Me 262 HG III/3. The cockpit was placed to the rear of the fuselage merging into the tail plane, fuel tanks and armament was set at the front of the aircraft.
All Messerschmitt Me 262 HG II, Me 262 HG III and Me 262 HGIV were never realized

Messerschmitt Me 262 HG III/ Concept 3 (Unicraft Models, Resin)

TYPE: High-speed test aircraft. Project

ACCOMMODATION: Pilot only

POWER PLANT: Two Heinkel-Hirth HeS 011 turbojet engines, rated at 1,300 kp thrust each

PERFORMANCE: High subsonic speed, estimated

COMMENT: In early 1941 several high speed versions of the basic Messerschmitt Me 262 were designed on the drawing board. The first of these “Hochgeschwindigkeitsjäger” (HG), (High-speed fighter) was the Messerschmitt Me 262 V9, unofficially called HG I. This aircraft featured modified wing leading edges of the inner wing section, swept angles of stabilizers, and a “Rennkabine” (Racing canopy), shallow, low-drag cockpit canopy and windscreen with low profile.
Other two projects were created following this way: The Me 262 HG II called for an outboard wing of increased chord and an improved air intake and engine installation, and finally  the Me 262 HG III, which was the final stage of development. It required more radical modifications, as a new 45 degree swept wing with engines housed in the wing roots. Three variants of the Me 262 HG III are known correspond to the original layout.
Entwurf 1” (Concept 1) had a the original tail plane of the Me 262, “Entwurf 2” (Concept 2) had a butterfly-type tail plane, and “Entwurf 3” (Concept 3) together with various subtypes was considerably altered in the fuselage area, where the cockpit was relocated at the rear and formed a part of the empennage group. The swept back stabilizers were located behind the cockpit. This Messerschmitt Me 262 HG III/ Concept 3 attained a very high state of fighter technology, which in the post-war period was the only realized abroad after a passage of several years.

Messerschmitt Me P. 1110/II “Tunnel-Einlauf”, (“Tunnel-air-intake”) with Kramer X-4, (Planet Models, Resin)

TYPE: High altitude fighter

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel-Hirth HeS 011 turbojet engine, rated at 1,300 kp

PERFORMANCE: 630 mph

COMMENT: In Autumn 1944, in the context of the “Jägernotprogramm” (“Emergency Fighter Program”) the Oberkommando der Luftwaffe (OKL, Luftwaffe High Command) requested for proposals for a new generation of fighter/interceptor aircraft in order to replace the Heinkel He 162 “Salamander” or “Volksjäger” (“Peoples fighter”).
Besides designs such as Blohm & Voss Bv P.212, Focke-Wulf Ta 183, Heinkel He P. 1078, and Junkers EF 128 Messerschmitt proposed its project Me P. 1110 with three different variants.
First of the designs was the Messerschmitt Me P.1110/I, a turbo-jet powered interceptor with a conventional-looking design with the air intakes located in the middle part of fuselage sides above the wing the inlet not protruding the cross section (“Rampen-Einlauf”, “Ramp-air-intake”). The wing was of wooden construction and was swept back to 60 degree at the wing root and 40 degree at the leading edge. The tail plane was conventional with elevators and a vertical fin and swept back. Power was provided by a Heinkel/Hirth HeS 011 turbojet engine. A pressurized cockpit with streamlined fairing,  tricycle landing gear and three MK 108 30mm cannon in the nose with a provision for two more in the wing roots was envisaged.
The second design was the Messerschmitt Me P.1110/II that differed from the Me P.1110/I mainly in a V-tail unit and a divided annular air intake behind the cockpit. The advantage of this unusual arrangement was that it would reduce drag by fifteen percent compared to a single nose air intake at the cost of four percent air flow reduction to the jet engines. To increase the air flow a supercharger was provided that additionally withdraw the boundary layer.
Like the Me P.1110/I, the Me P.1110/II had 40 degree swept-back wings, an HeS 011 jet engine and was armed with three MK 108 30mm cannon in the nose with a provision for two more in the wing roots.
The third design the Messerschmitt Me P.1110 “Ente” was of canard configuration with small wings in the front and larger wings in the rear part of the fuselage.
All projects would be soon dropped in favor of the Junkers EF 128 and none of the Messerschmitt designs made it to the prototype stage. (Ref.: 20, 22).

Arado Ar. 340 (Anigrand Models, Resin)

TYPE: Medium bomber

ACCOMMODATION: Crew of four

POWER PLANT: Two Junkers Jumo 222 or Daimler-Benz DB 604 (both liquid-cooled) or BMW 802 (radial) piston engines
PERFORMANCE: 360 mph

COMMENT: In 1939, the “Technisches Amt des Reichluftfahrtministeriums” (RLM); (Technical Office of the Reich Air Ministry) issued specification for a “Bomber B” requirement.
The Reich Air Ministry ordered the aircraft to replace the Junkers Ju 88 and Dornier Do 217 bombers by 1943. At first four manufacturers submitted plans to the Air Ministry: Arado project E.340, Dornier Do 317, Focke-Wulf Fw 191, and Junkers Ju 288. Later, Henschel was asked to submit its Henschel Hs 130 design due to the expertise of this company with its experiments with pressurized cockpits. Meanwhile, Project “Bomber B” contest winner was the Arado design, officially named Ar 340.
While the designs of all other contenders were of more conventional layout the Arado Ar 340 was designed with a central fuselage containing all four crew members. The cockpit and rear compartment were glazed and pressurized. The projected Junkers Jumo 222 engines were positioned in a unique twin-boom arrangement connected only through the wing assembly, a configuration which offered the crew better visibility. The landing gear was mounted to the load-bearing wing center-section. The tail of the aircraft was a unique design, where the tail plane did not connect the two booms but was cantilevered outwards instead, each similar to the asymmetric Blohm & Voss Bv 141B booms and tail arrangement. Also similarly, this would have provided the rear gunner with a clear range of fire directly behind. The fuselage extended forwards beyond the engines, with the gunners situated behind the cockpit, ahead of the bomb bay and wing spars. The MG 151 cannon in the tail of the central fuselage would have been controlled with remote aiming through periscopes. There were also two remote-controlled “Fernbedienbare Drehlafette FDL 131” 13mm (remotely-controlled gun turrets) to be placed above and below the fuselage.
The Ar 340 was one of the steadily growing numbers of later-war military airframe designs designed to use the troublesome Junkers Jumo 222 engine. Otherwise an innovative design, these powerful engines were selected because they would have allowed the Arado Ar 340 to carry the required payload of 5,900 kg within a relatively compact airframe, despite their still-strictly developmental nature. As the development of the Junkers Jumo 222 engines were cancelled, plans were discussed to power the Arado Ar 340 with Daimler-Benz DB 605 liquid-cooled engines or BMW 802 radial engines. Meanwhile the RLM favoured the Junkers Ju 288 and the Arado project was not pursued.
Ultimately, the entire “Bomber B project” was cancelled, primarily as a result of the failure to develop the required engines (Ref.: 24).