About ModelPlanes.de

Brief description: This picture gallery contains aircraft models of World War II on a scale 1:72 as injection moulded, resin- and vacu- formed kits as well as home-made conversions.

Dear Visitor,

Here, you will find photos of aircraft models of World War II on a scale 1:72. e.g. those of the United States Army Air Force (USAAF), the United States Navy (USN), the Royal Air Force (RAF), the Royal Navy (RN) , the Japanese Imperial Air Army Force (IAAF), the Japanese Imperial Navy Air Force (INAF), the German Air Force (Luftwaffe, GAF) and the Air Force of the Soviet Union. Within these branches of the services you can select between fighters, fighter-bombers, bombers, trainers etc. Also you can select projects, designed on the drawing board as well as post-war developments, whose origin dated back into the time of WW II.

Important notice: Among the aircraft models shown here there are many aircraft from the former German Air Force (Deutsche Luftwaffe). They all show the swastika as a national symbol of that time. I would like to point out that this is not a political statement, but rather a source of historical information on the types of aircraft flown by the German Luftwaffe before and during the Second World War. It is to be taken as a reference for all aviation enthusiasts, and not taken as an expression of any sympathy for the Nazi regime or any  Neo-Nazi or Right wing hate Groups.

I have built all these models just for fun and never, it has been my intention to show them anybody or to present them at a show. Over the years more then 1.500 models have emerged, and many more kits have not been completed yet, or are still waiting for the finish or the last little detail.

Continue reading About ModelPlanes.de

Kogiken Plan I Type A Heavy fighter (Unicraft, Resin)

TYPE: Interceptor, fighter. Project


POWER PLANT: One Kawasaki Ha 40 liquid-cooled engine, rated at 1,100 hp

PERFORMANCE: No data available

COMMENT: In the summer of 1941, Rikugun Kokugijutsu Kenkyujo (Japanese Army Aerotechnical Research Institute, short named “Kogiken”) formed a design group under the leadership of Ando Sheigo. The task was to study Japanese aviation technology in terms of what was possible at present and in the near future. Additionally, some effort was to be spent on reviewing the aircraft technology of other countries. From the results the group was to assemble and draft proposals for aircraft to fill various pre-determined roles: heavy fighter, light bomber, heavy bomber and reconnaissance. For a bigger idea pool, Imperial Japanese Army (IJA) main aircraft providers, Kawasaki and Tachikawa, were invited to join the group, too. In that period projects such as Kogiken Plan III Revised light bomber and Kogiken Plan V Revised light bomber were designed and proposed to the IJA.
Among fighter designs the Kogiken Plan I Type A was a single seat heavy fighter and a Japanese adaption of the Bell P-39 “Airacobra” mid-fuselage engine concept. The aircraft was designed end 1941 and should be powered by a single Kawasaki Ha 40 liquid-cooled in-line engine, derived from the German Daimler-Benz DB 601A. The engine was installed immediately aft the cockpit driving a four-bladed puller propeller via an extension shaft. A tricycle landing gear was provided similar to the Bell P-39. Armament consisted of 37 mm Ho-203 or 20 mm Ho-5 canon firing through the propeller hub and two wing-mounted 12.5 mm Ho-103 guns. No further details are known, the project never left the drawing board (Ref.: Parts from Unicraft).

Hawker “Typhoon” Mk. IB, 143th SQN (Airfix)

TYPE: Interceptor, fighter bomber


POWER PLANT: One Napier “Sabre” IIC liquid-cooled engine, rated at 2,180 hp

PERFORMANCE: 412 mph at 19,000 ft

COMMENT: The Hawker “Typhoon” (“Tiffy” in RAF slang), was a British single-seat fighter bomber, produced by Hawker Aircraft. It was intended to be a medium–high altitude interceptor, as a replacement for the Hawker “Hurricane” but several design problems were encountered and it never completely satisfied this requirement.
The “Typhoon” was originally designed to mount twelve Browning Machine guns and be powered by the latest 2000 hp engines. Its service introduction in mid-1941 was plagued with problems and for several months the aircraft faced a doubtful future. When the Luftwaffe brought the formidable Focke-Wulf Fw 190 into service in 1941, the “Typhoon” was the only RAF fighter capable of catching it at low altitudes; as a result it secured a new role as a low-altitude interceptor.
By contemporary standards, the new design’s wing was very “thick”, similar to the “Hurricane” before it. Although the “Typhoon” was expected to achieve over 400 mph in level flight at 20,000 ft, the thick wings created a large drag rise and prevented higher speeds than the 410 mph at 20,000 feet achieved in tests. The climb rate and performance above that level was also considered disappointing. When the “Typhoon” was dived at speeds of over 500 mph, the drag rise caused buffeting and trim changes. These compressibility problems led to Hawker designing the “Typhoon II”, later known as the “Tempest”, which used much thinner wings with a laminar flow airfoil.
By 1943, the RAF needed a ground-attack fighter more than a “pure” fighter and the “Typhoon” was suited to the role and less-suited to the pure fighter role than competing aircraft such as the Supermarine “Spitfire” Mk IX. The powerful engine allowed the aircraft to carry a load of up to two 454 kg bombs, equal to the light bombers of only a few years earlier. The bomb-equipped aircraft were nicknamed “Bombphoons” and entered service with No. 181 Squadron, formed in September 1942
Starting in January 1943, a “Typhoon” was used to test a new, clear, one piece sliding “bubble” canopy and its associated new windscreen structure which had slimmer frames which, together with the “cut-down” rear dorsal fairing, provided a far superior all-around field of view to the car-door type. From November 1943 all production aircraft were to be so fitted. However, the complex modifications required to the fuselage and a long lead time for new components to reach the production line meant that it took some time before the new canopy became standard. Production of the “Typhoon”, which was entirely the responsibility of Gloster Aircraft, totaled 3,330 machines (Ref.: 24)

Focke-Wulf Ta 183/III (Planet, Resin)

TYPE: Fighter, Project


POWER PLANT: One Heinkel-Hirth HeS 011 turbojet engine, rated at 1,300 kp


COMMENT: On February 1945 the Tank design team proposed a second design of the Focke-Wulf/Tank Ta 183 turbojet fighter although the RLM accepted the first design for production. The new aircraft was similar to the Ta 183 design, except the wings were swept back at 35 degrees and the cockpit was set farther aft. Also, the tail unit was of more conventional design, with a curvilinear sweep of the fuselage into the vertical tail. This seemed to be necessary because it was expected that the long vertical tail of Ta 183 led to vibrations. By that the horizontal tail planes were mounted lower at the end of the fuselage. As with many other projects al work was halted with the end of the WW II two months later (Ref.: 17).

Kyushu J7W1 “Shinden” (“Magnificent Lightning”), (Tamiya)

TYPE: Interceptor fighter


POWER PLANT: One Mitsubishi Ha-43 12 (MK9D) radial engine, rated at 2,130 hp


COMMENT: The Kyūshū J7W1 “Shinden”( “Magnificent Lightning”) fighter was a Japanese propeller-driven aircraft prototype with wings at the rear of the fuselage, a nose mounted canard, and pusher engine. Developed by the Imperial Japanese Navy (IJN) as a short-range, land-based interceptor, the J7W was a response to Boeing B-29 “Superfortress” raids on the Japanese home islands. In the IJN designation system, “J” referred to land-based fighters and “W” to Watanabe Tekkōjo, the company that oversaw the initial design..
The construction of the first two prototypes started in earnest by June 1944, and the first prototype was completed in April 1945. The 2,130 hp Mitsubishi MK9D (Ha-43) radial engine and its supercharger were installed behind the cockpit and drove a six-bladed propeller via an extension shaft. Engine cooling was to be provided by long, narrow, obliquely mounted intakes on the side of the fuselage. It was this configuration that caused cooling problems while running the engine while it was still on the ground. This, together with the unavailability of some equipment parts postponed the first flight of the “Shinden”. Even before the first prototype took to the air, the Navy ordered the J7W1 into production, with a quota of 30 “Shinden” a month given to Kyushu’s Zasshonokuma factory and 120 from Nakajima’s Handa plant. It was estimated some 1,086 “Shinden” could be produced between April 1946 and March 1947.
On August 1945, the prototype first flew from Itazuke Air Base. Two more short flights were made, a total of 45 minutes airborne, one each on the same days as the atomic bombings of Hiroshima and Nagasaki occurred, before the war’s end. Flights were successful, but showed a marked torque pull to starboard (due to the powerful engine), some flutter of the propeller blades, and vibration in the extended drive shaft.
A turbojet engine–powered version, the Kyushu J7K2, was considered, but never even reached the drawing board (Ref.: 24).

Supermarine “Seafire” Mk III, 887 NAS (Pavla Models)

TYPE: Carrier-borne fighter, fighter-bomber


POWER PLANT: One Rolls-Royce “Merlin” 55 liquid-cooled engine, rated at 1,470 hp

PERFORMANCE: 352 mph at 12,250 ft

COMMENT: The Supermarine “Seafire” was a naval version of the Supermarine “Spitfire” adapted for operation from aircraft carriers. The name “Seafire” was arrived at by abbreviating the longer name “Sea Spitfire”.
In late 1941 and early 1942, the Admiralty assessed the “Spitfire” for possible conversion. In late 1941, a total of 48 “Spitfire” Mk Vb were converted to become “hooked Spitfires”. This was the “Seafire” Mk Ib and would be the first of several “Seafire” variants to reach the Royal Navy’s Fleet Air Arm. The second semi-naval variant of the “Seafire” and the first to be built as such, was the “Seafire F Mk IIc which was based on the “Spitfire” Mk Vc. The IIc was the first of the “Seafires” to be deployed operationally in large numbers. Although developed for aircraft carrier use, this version still lacked the folding wings needed to allow them to be used on board some Royal Navy carriers, some of which had small aircraft elevators unable to accommodate the full wingspan of the “Seafires”. The “Seafire” F Mk III was the first true carrier adaptation of the Spitfire design. It was developed from the “Seafire” Mk IIC, but incorporated manually folding wings allowing more of these aircraft to be spotted on deck or in the hangars below. Supermarine devised a system of two straight chordwise folds; a break was introduced immediately outboard of the wheel-wells from which the wing hinged upwards and slightly angled towards the fuselage. A second hinge at each wingtip join allowed the tips to fold down (when the wings were folded the wingtips were folded outwards). This version used the more powerful Merlin  or Merlin 55M, driving the same four-bladed propeller unit used by the IIC series; the Merlin 55M was another version of the Merlin for maximum performance at low altitude. This Mark was built in larger numbers than any other “Seafire” variant; of the 1,220 manufactured Westland built 870 and Cunliffe Owen 350 aircraft. (Ref.: 24).

Henschel Hs P.75 (CMK, Resin)

TYPE: Fighter, fighter bomber, Project


POWER PLANT: One Daimler Benz DB 610 liquid-cooled engine, rated at 3,500 hp


COMMENT: In early 1941 the OKL asked for a possible successor for the Messerschmitt Me 110 heavy fighter. Among others the Henschel Aircraft Company proposed a design of a futuristic and unusual configuration. This design, the Hs P.75, featured a tapered fuselage with slightly swept-back wings set back to the rear fuselage of the aircraft and a pair of slightly swept-back canards located on the nose. The widened fuselage housed a powerful engine that drove three-bladed contra-rotating pusher propellers at the rear via an extension shaft. As power unit a Daimler Benz DB 610 engine, which were two DB 605 liquid-cooled engines joined side-by-side, was proposed. These were the same engines that the Heinkel He 177 bomber used and became known for overheating and catching fire.  So it was decided to install the Daimler Benz DB 613, in fact two coupled DB 603 liquid-cooled engines, rated at 3,500 hp. A vertical tail unit was mounted beneath the fuselage additionally functioning as a tail bumper and protected the propellers from stroking the ground during take-off. A tricycle landing gear arrangement was chosen and a single pilot sat in the cockpit located about midway along the fuselage. All weapons were mounted in the nose. The advantage of the pusher propeller and the forward canard design was the excellent view of the pilot and concentration of weapons in the nose. The disadvantage would be the engine cooling and the pilot’s safely exit in case of emergency. Although good results were obtained in wind tunnel testing this design was not followed up further.
Notable is the fact that this basic design was realized in several WW II aircraft design such as Curtiss XP-55 “Ascender” and Kyushu J7W1 “Shinden” (Ref.: 17).


Tachikawa Ki-77 (A+V Models, Resin)

TYPE: Long-range Transport and communication aircraft

ACCOMMODATION: Crew of five in sealed oxygen cabin

POWER PLANT: Two Nakajima Ha-115 radial engines, rated at 1,170 hp each

PERFORMANCE: 273 mph at 19,100 ft

COMMENT: The Tachikawa Ki-77 was a Japanese very long-range experimental transport and communications aircraft of World War II derived from a civil design commissioned by the Japanese newspaper “Asahi Shinbun” (“Asahi Press”) to break the flight distance record set by an Italian Savoia-Marchetti S.M.75G.
Ki-77 was the Japanese Army Air Force designation for the civil A-26. The “A” stood for the name of the sponsor Asahi press and “26” for the first two digits of the current Japanese year, 2600 (A. D. 1940).
The overall design was developed by the Aeronautical Research Institute of the University Tokyo together with Tachikawa. It was a clean, slim low wing twin-engine monoplane, and was finalized in autumn of 1940 with the first flight expected in late 1941. But this was canceled with the start of the war against the United States and the reallocation of priorities. The design included a number of novel features, including a high aspect ratio laminar flow wing for reduced drag and a sealed but unpressurized cabin to reduce the need for oxygen masks at its intended operating altitude as well as special low drag cowlings.
In mid 1942, the Japanese decided to forge a link with Europe, but wished to avoid Russian-controlled airspace and development on the Ki-77 was restarted. The first of two prototypes flew on 18 November 1942. The Ki-77 suffered from persistent oil cooling problems which required many changes before being solved, delaying any flight into July 1943. While working on the problem, Tachikawa built a second aircraft that was ready in mid 1943. After several flight trials it was readied for a “Seiko” (Success) mission between Japan and Germany. The aircraft departed Japan on 30 June 1943 for Singapore, where the airstrip had to be lengthened by 1,000 meters to assure a safe takeoff. Finally, the Ki-77 took off at 7:10 on 7 July 1943 with eight tons of fuel, ample to reach Europe. Their intended destination was a German airfield. The aircraft never reached its destination but disappeared over the Indian Ocean, probably intercepted by British fighters thanks decoding intercepted German communications.
Even if in 1944 the usefulness of record breaking flights was overshadowed by the necessities of war, the Japanese needed a propaganda coup and the surviving Ki-77 was available. On 2 July it flew 19 circuits over a triangular route off Manchuria, landing 57 hours 9 minutes later and covering 10,212 mi at an average speed of 179.1 mph, thus setting a new endurance record. The Ki-77 landed with 800 liters remaining in the tanks of the 3,200 US gal it started with, so the maximum endurance was around 11,000 mi. The Ki-77’s endurance record was never internationally recognized or officiated and was still in existence when Japan surrendered. The aircraft was shipped to the United States aboard the US Navy escort aircraft carrier USS CVE-9 “Bogue” from Yokosuka in December 1945, arriving in the States on January 1946 for examination, before being scrapped (Ref.: 24).

McDonnell FD-1 “Phantom” (Frank-Airmodel, Vacu-formed)

TYPE: Carrier-borne fighter


POWER PLANT:  Two Westinghouse J30-WE-20 turbojet engines, rated at 725 kp each

PERFORMANCE: 479 mph at sea level

COMMENT: In early 1943, aviation officials at the United States Navy were impressed with McDonnell’s audacious XP-67 “Bat” project. McDonnell was invited by the Navy to cooperate in the development of a shipboard jet fighter, using an engine from the turbojets under development by Westinghouse Electric Corporation. Three prototypes were ordered on August 1943 and the designation XFD-1 was assigned. Under the 1922 United States Navy aircraft designation system, the letter “D” before the dash designated the aircraft’s manufacturer. The Douglas Aircraft Company had previously been assigned this letter, but the USN elected to reassign it to McDonnell because Douglas had not provided any fighters for Navy service in years.
McDonnell engineers evaluated a number of engine combinations, varying from eight 24 cm diameter engines down to two engines of 48 cm diameter. The final design used the two 48 cm engines after it was found to be the lightest and simplest configuration. The engines were buried in the wing root to keep intake and exhaust ducts short, offering greater aerodynamic efficiency than underwing nacelles and the engines were angled slightly outwards to protect the fuselage from the hot exhaust blast. Placement of the engines in the middle of the airframe allowed the cockpit with its bubble-style canopy to be placed ahead of the wing, granting the pilot excellent visibility in all directions. This engine location also freed up space under the nose, allowing designers to use tricycle gear, thereby elevating the engine exhaust path and reducing the risk that the hot blast would damage the aircraft carrier deck. The construction methods and aerodynamic design of the “Phantom”, as the aircraft was assigned, were fairly conventional for the time; the aircraft had unswept folding wings.  Adapting a jet to carrier use was a much greater challenge than producing a land-based fighter because of slower landing and takeoff speeds required on a small carrier deck. When the first XFD-1was completed in January 1945, only one Westinghouse was available for installation. Ground runs and taxi tests were conducted with the single engine, and such was the confidence in the aircraft that the first flight on 26 January 1945 was made with only the one turbojet engine. During flight tests, the “Phantom” became the first naval aircraft to exceed 500 mph. With successful completion of tests, a production contract was awarded on March 1945 for 100 FD-1 aircraft. With the end of the war, the “Phantom” production contract was reduced to 30 aircraft, but was soon increased back to 60.
The first prototype was lost in a fatal crash on November 1945, but the second and final “Phantom” prototype was completed early the next year and became the first purely jet-powered aircraft to operate from an American aircraft carrier, completing four successful takeoffs and landings on 21 July 1946, from USS CV-42 “Franklin D. Roosevelt”.  At the time, she was the largest carrier serving with the U.S. Navy, allowing the aircraft to take off without assistance from  a catapult (Ref. 24).


Focke-Wulf Fw P. 031 0239/10 (100x1000x1000 Bomber, Project B), (Planet, Resin)

TYPE: Fast medium bomber.Project


POWER PLANT: Two Heinkel-Hirth HeS 011 turbojet engines, rated at 1,300 kp each

PERFORMANCE: 659 mph at 45,900 ft

COMMENT:  In 1944, Focke-Wulf Aircraft Company projected three designs of a bomber using two Heinkel-Hirth He S 011 turbojets. These bombers were known under the unofficial designation “1000x1000x1000 Bomber-Projekt A”, Projekt B and Projekt C. The designation “1000x1000x1000” meant that the aircraft could carry a 1000 kg (2205 lbs) bomb load over a distance of 1000 km (621 miles) and at a speed of 1000 km/h (621 mph).
The second design under the Focke-Wulf  internal designation Fw P.031 0239/10 “3×1000 Bomber, Projekt B” was of a flying wing layout. There was a small fuselage which held the cockpit and forward landing gear. The wing was swept back at 35 degrees and the fuel load in flexible tanks was carried ahead of the main wing spar. The engines and main landing gear were located behind the main wing spar. Two Heinkel-Hirth He S 011 jet engines each developing 1300 kg of thrust were fed by air intakes located in the wing leading edge near the wing roots.  The wing tips were bent downwards to act as vertical stabilizers and contained small rudders.  The ailerons also served as elevators and in addition small deflectors were mounted within the jet exhaust, one of the first uses of thrust vectoring.  The main landing gear retracted inwards and the nose gear swung up and forward. A single pilot sat in the extensively glazed cockpit located in the extreme nose, and no armament was planned at this stage in the development. A 1000 kg bomb load could be carried in the internal bomb bay located in the center wing. Since these designs would have taken several years to complete, the end of the war ended all development (Ref.: 17).

Kawanishi E15K1 “Shiun” (“Violet Cloud”, “Norm”)(Aoshima, Parts Scratch-built)

TYPE: High-speed reconnaissance float plane


POWER PLANT: One Mitsubishi MK4S Kasei 24 radial engine, rated at 1,850 hp

PERFORMANCE: 291 mph at 18,700 ft

COMMENT: In 1939 the Imperial Japanese Navy instructed the Kawanishi Aircraft Company to develop a two-seat high-speed reconnaissance floatplane, which was required to have sufficient performance to escape interception by land based fighters. It was planned to equip a new class of cruisers, intended to act as a flagship for groups of submarines operating six of the new floatplanes to find targets. Kawanishi designed a single-engine low-wing monoplane, powered by a 1,460 hp Mitsubishi MK4D Kasei 14 radial engine driving two contra-rotating two-blades propellers, the first installation of contra-rotating propellers produced in Japan, while a laminar flow airfoil section was chosen to reduce drag. It had a single main float under the fuselage and two stabilising floats under the wing. The stabilising floats were designed to retract into the wing, while the central float was designed to be jettisoned in case of emergency, giving a sufficient increase in speed to escape enemy fighters.
The first prototype of Kawanishi’s design, designated E15K1 in the Navy’s short designation system made its maiden flight on 5 December 1941. Five more prototypes followed during 1941-42. Problems were encountered with the retractable stabilising floats, resulting in several accidents when the floats could not be lowered for landing, and the system was eventually abandoned, with the stabilising floats being fixed, and a more powerful Mitsubishi MK4S Kasei 24 engine fitted to compensate for the increased drag.
Despite these problems, the E15K1 was ordered into limited production as the Navy Type 2 High-speed Reconnaissance Seaplane “Shiun” Model 11. Six were sent to Palau in the South Pacific, but these were quickly shot down by Allied fighters, as the jettisonable float failed to separate on demand (although subjected to wind tunnel testing, the float separation system had never been tested on the actual aircraft). This resulted in the cancellation of production in February 1944, with only 15 “Shiuns” completed, including the six prototypes (Ref.: 24).