Category Archives: Luftwaffe

Deutschland / Germany

Heinkel He 177A-5/R2 “Greif” (“Griffin”) with Ruhrstahl Fritz X, 4./KG 100, (Revell)

TYPE: Heavy long-range bomber

ACCOMMODATION: Crew of 6

POWER PLANT: Two Daimler- Benz DB 610 “power systems”, each one created from a twinned-pair of Daimler-Benz DB 610A-1/B-1 liquid-cooled engines, rated at 2,950 hp each

PERFORMANCE: 303 mph at 19,685 ft

COMMENT: The Heinkel He 177 “Greif” (“Griffin”) was a long-range heavy bomber flown by the German Luftwaffe during World War II. The He 177 was the only operational long-range heavy bomber available to the Luftwaffe during the war years that had a payload/range capability similar to the four-engined heavy bombers flown by the USAAF and RAF in the European theatre; it had higher cruising and maximum speeds.
Designed to a 1936 requirement known as “Bomber A”, the aircraft was originally intended to be a purely strategic bomber intended to support a long-term bombing campaign against Soviet industry in the Urals. In spite of its large wingspan, the design was limited to two engines. During the design, Luftwaffe doctrine came to stress the use of moderate-angle dive-bombing, or “glide bombing”, to improve accuracy. Applying the changes needed for this type of attack to such a large aircraft was unrealistic.
To deliver the power required from only two engines on an aircraft this large, engines of at least 2,000 hp were needed. Such designs were not well established and the Daimler-Benz DB 606 “power system”, combined with the cooling and maintenance problems caused by the tight nacelles, caused the engines to be infamous for catching fire in flight. Early models gained the nicknames  Reichsfeuerzeug“ (“Reich’s lighter”) from Luftwaffe aircrew.
On 9 November 1939, the first prototype, the He 177 V1, was flown. Further seven prototypes were completed until 1942, followed by 35 pre-production He 177 A-0s and 130 He 177 A-1s. The early aircraft in this batch were used for further trials, and after a brief and unhappy operational debut the remainder were withdrawn from service. From late 1942 they were replaced by He 177 A-3s. Starting in August 1943, all He 177’s delivered had an extended rear to both instill greater stability for bombing and to offset the slightly lengthened engine nacelles. Most of the short-fuselage A-3s were rebuilt to the longer standard . From November 1942 to June 1944 612 He 177A-3 were built resp. converted (from short fuselage to long fuselage). These were followed by 350 He 177A-5.
The type matured into a usable design but was too late in the war to play an important role. It was built and used in some numbers, especially on the Eastern Front where its range and cruising altitudes in excess of 19,690 ft was particularly useful. So, losses were relatively light. The Soviet Air Force, equipped mainly for low-level interception and ground-attack roles, could do little to hinder the high-flying bombers. In contrast the He 177 saw considerably less use on the Western Front late in 1944.
As the war progressed, He 177 operations became increasingly ineffective. Fuel and personnel shortages presented difficulties, and He 177s were sitting on airfields all over Europe awaiting new engines or engine-related modifications. Constant attacks of the Allied against Luftwaffe long-range combat units in France made continuous operations difficult.
In common with most piston-engined German bombers, the He 177 was grounded from the summer of 1944 due to the implementation of the Emergency Fighter Program (Jäger Notprogramm). Until November 1944, 1,153 He 177 in several subtypes were built by Arado and Heinkel.
One Heinkel He 177A-0, one A-3, and two A-5 were rebuilt as Heinkel He 177 B  prototypes from December 1943 to July 1944. From the beginning these aircraft were designed as a four-engined development with four Daimler-Benz DB 603 in separate nacelles instead  of the “coupled engine” powered He 177 A-series. Further plans show that these engine arrangements were postulated for the successor, the Heinkel He 277.
The Heinkel He 177 A-5/R2, shown here, belongs to the 4./KG 100, stationed at Chateaudun, France. This version was optimized for Ruhrstahl Fritz X and Henschel Hs 293 guided bombs and equipped with FuG 203 Kehl-Straßburg control gear.

RUHRSTAHL FRITZ X

Ruhrstahl Fritz X was the most common name for a German guided anti-ship glide bomb used during WWII. Fritz X was the world’s first precision guided weapon deployed in combat and the first to sink a ship in combat. Fritz X was a nickname used both by Allied and German Luftwaffe personnel. Alternative names include Ruhrstahl SD 1400 X, Kramer X-1, PC 1400X or FX 1400 (the latter, along with the unguided PC 1400 Fritz nickname, is the origin for the name “Fritz X”.
Fritz X was a further development of the PC 1400 (Panzersprengbombe, Cylindrisch 1,400 kg) armour-piercing high-explosive bomb, itself bearing the nickname Fritz. It was a penetration weapon intended to be used against armored targets such as heavy cruisers and battleships. It was given a more aerodynamic nose, four stub wings, and a box shaped tail unit consisting of a roughly 12-sided annular set of fixed surfaces and a cruciform tail with thick surfaces within the annulus, which contained the Fritz Xs aerodynamic controls.
The Luftwaffe recognized the difficulty of hitting moving ships during the Spanish Civil War. Dipl. engineer Max Kramer, who worked at the Deutsche Versuchsanstalt für Luftfahrt (DVL) had been experimenting since 1938 with remote-controlled free-falling 250 kg bombs and in 1939 fitted radio-controlled spoilers. In 1940, Ruhrstahl AG was invited to join the development, since they already had experience in the development and production of unguided bombs.
Fritz X was guided by a FuG 203 Kehl-Straßburg radio control link, which sent signals to the movable spoilers in the thick vertical and horizontal tail fin surfaces, within the annular tail fin structure. This control system was also used for the unarmored, rocket-boosted Henschel Hs 293 anti-ship ordnance, itself first deployed on 25 August 1943. The Kehl-Straßburg receiver antenna installations on the Fritz X were aerodynamically integrated into the trailing edge of the annular surfaces of the tail fin, non-metallically encapsulated within a quartet of “bulged” sections in the trailing edge. This design feature of the FuG 230 Kehl-Straßburg receiver installation is not entirely unlike the Azon (Azimuth only ) US contemporary guided bomb, which had its own receiving antennas placed in the quartet of diagonal struts bracing the fixed sections of its tail fins.
Minimum launch height was 13,000 ft – although 18,000 ft was preferred – and a range of 5 km was necessary. As it was an MCLOS (manual command to line of sight)-guidance ordnance design, the operator had to keep the bomb in sight at all times (a tail flare was provided, as with the Azon, to assist the operator in tracking the weapon) and the control aircraft had to hold course, which made evading gunfire or fighters impossible. Approximately 1,400 examples, including trial models, were produced (Ref.: 24).

Arado Ar 234C-2 with Fieseler Fi 103 (V-1), (Dragon Models)

ARADO Ar 234C-2 BLITZ

TYPE: Turbojet driven bomber, Mistel (Mistletoe) component
ACCOMMODATION: Pilot only
POWER PLANT: Four BMW 003A-2 turbojet engines, rated at 800 kp thrust each
PERFORMANCE: 460 mph at 20,000 ft
COMMENT: The Arado Ar 234 Blitz (Lightning) was the world’s first operational turbojet-powered bomber, built by the German Arado company during World War II.
Produced in limited numbers it was used almost entirely for aerial reconnaissance. In its few uses as a bomber it proved to be nearly impossible to intercept. It was the last German Luftwaffe aircraft to fly over the UK during the war, in April 1945
The Ar 234 was built in various versions: Ar 234A with two turbojet engines, Ar 234B with two turbojet engines or for engines in separat nacelles and Ar 234C with four engines mounted in a  pair of twin-engine nacelles and a purely rocket-engine-driven Ar 234R. Of each of these various versions sub-types were built or planned.
The Arado Ar 234C was equipped with four lighter weight BMW 003A turbojet engines mounted in a pair of twin-engine nacelles based on basis of the eighth prototype. The primary reason for changing the engienes was to free up the Junkers Jumo 004 turbojets for use by the Messerschmitt Me 262, but the change improved overall thrust to nearly 3.2 tonnes with all four BMW turbojets at full take-off power, especially useful for take-off and climb-to-altitude performance. An improved cockpit design, with a slightly bulged outline for the upper contour integrating a swept-back fairing for the periscope, used a simplified window design with fewer glazed panels for ease of production. The four BMW jet engines gave about 20% greater airspeed than the Ar 234B series airframes, and the faster climb to altitude meant more efficient flight and increased range.
Although an operational test squadron was being prepared, only 14 C-series airframes had been completed by the end of the war, of which fewer than half had engines. Some were found at the end of the war sitting in the open, complete but for empty engine nacelles.Comprehensive flight testing of the new sub-type had yet to begin when Germany surrendered. Three basic variants of the C-series were planned for initial construction, with several more laid out as detailed proposals. Some of these would have had a pair of the higher thrust, but heavier Heinkel/Hirth HeS 011turbojet engines, while others were intended to feature swept or “crescent”-type wings.
There were plans, not put into practice, to use the Arado 234C turbojet bomber to launch V-1s either by towing them aloft or by launching them from a “piggy back” position (in the manner of the Mistel (Mistletoe), but in reverse) atop the aircraft. In the latter configuration, a pilot-controlled, hydraulically operated dorsal trapeze mechanism would elevate the missile on the trapeze’s launch cradle about 2.4 m clear of the Ar 234’s upper fuselage. This was necessary to avoid damaging the mother craft’s fuselage and tail surfaces when the pulsejet ignited, as well as to ensure a “clean” airflow for the Argus motor’s intake.

FIESELER Fi 103 V-1 FLYING BOMB

TYPE: Unmanned Flying bomb
ACCOMMODATION
: None
POWER PLANT
: One Argus As 109-014 pulsejet, rated at 330 kp thrust
PERFORMANCE: 400 mph at 3000 ft
COMMENT:
The V-1 flying bomb (Vergeltungswaffe 1, Vengeance Weapon 1) was an early cruise missle and the only production aircraft to use a pulsejet for power. Its official RLM (Reichsluftwsffenministerium, Reich Aviation ministry) designation was Fi 103 was also known to the Allies as the buzz bomb or doodlebug and in Germany as Kirschkern (cherry stone) or Maikäfer (maybug).The V-1 was deployed for the terror bombing of London. It was developed at Peenemünde Army Research Center in 1939 by the German Luftwaffe at the beginning of the WW II. Because of its limited range, the thousands of V-1 missiles launched into England were fired from launch favilities along the French and Dutch coasts.
The V-1 was designed with a fuselage constructed mainly of welded sheet steel and wings built of plywood. The simple Schmidt/Argus-built pulsejet engine pulsed 50 times per second, and the characteristic buzzing sound gave rise to the colloquial names buzz bomb” or doodlebug.
The Argus pulsejet‘s major components included the nacelle, fuel jets, flap valve grid, mixing chamber Venturi, tail pipe and spark plug. Compressed air forced gasoline from the 640 l fuel tank through the fuel jets, consisting of three banks of atomizers with three nozzles each. Argus’ pressurized fuel system negated the need for a fuel pump.  These nine atomizing nozzles were in front of the air inlet valve system where it mixed with air before entering the chamber. A throttle valve, connected to altitude and ram pressure instruments, controlled fuel flow. Schmidt’s spring-controlled flap valve system provided an efficient straight path for incoming air. The flaps momentarily closed after each explosion, the resultant gas compressed in the Venturi chamber, and its tapered portion accelerated the exhaust gases creating thrust. The operation proceeded at a rate of 42 cycles per second. The engine made its first flight aboard a Gotha Go 145 biplane on 30 April 1941.
The V-1 guidance system used a simple autopilot developed to regulate altitude and airspeed. A pair of gyroscopes controlled yaw and pitch, while azimuth was maintained by a magnetic compass. Altitude was maintained by a barometric device.Two spherical tanks contained compressed air  that drove the gyros, operated the pneumatic servo-motors controlling the rudder and elevator, and pressurized the fuel system. The warhead consisted of 850 kg of Amatol, 52A+ high-grade blast-effective explosive with three fuses. An electrical fuse could be triggered by nose or belly impact. Another fuse was a slow-acting mechanical fuse allowing deeper penetration into the ground, regardless of the altitude. The third fuse was a delayed action fuse, set to go off two hours after launch.
Almost 30,000 V-1s were built; by March 1944, they were each produced in 350 hours (including 120 for the autopilot), at a cost of just 4% of a V-2, which delivered a comparable payload. Approximately 10,000 were fired at England; 2,419 reached London (Ref.: 7, 24).

Dornier Do P…. “Kleinstjäger”, (Miniature Fighter”), (Unicraft Models, Resin)

TYPE: Fighter, Interceptor

ACCOMMODATION: Only Pilot in prone position

POWER PLANT: One BMW 003 A-1 turbojet engine, rated at 800 kp thrust

PERFORMANCE: No data available

COMMENT: During November 1944, the RLM issued a requirement for the simplest possible type of fighter which could be more rapidly produced than the Heinkel He 162 Salamander (“Volksjäger”), (People-fighter) then being built. The design was not, however, to be a semi-expendable weapon in the manner of the Bachem Ba 349 Natter, because conventional landings and take-offs were to be made. Much had already been done in the Volksjäger competition to simplify airframes, so attention now turned towards simplifying the power unit, though without losing too much in the way of performance. Thus, the power unit was to be a simple pulse-jet as produced by Argus for the Fieseler Fi 103 V 1) flying bomb, a turbojet engine  or a liquid-fuelled rocket. The Kleinstjäger or Miniaturjäger was to employ the minimum of strategic materials, dispense with refinements such and electronic equipment and, by virtue of quick production, increase the chances of intercepting the enemy by flying in large numbers.
The problem of supplying all the new pilots was common to both Miniatur- and Volksjäger programmes whichever was adopted. Only three firms, which also participated in the Volksjäger competition, put forward Miniaturjäger projects, Blohm und Voss, Heinkel and Junkers.
There is also some evidence that the Dornier Company was working on a design for a Miniaturjäger. In literature a three-view thumbnail sketch of a design is known, the in-house project designation is given as Do P…. The little aircraft was to be powered by a BMW 003 turbojet engine. A high-mounted wing with light swept leading edge was envisaged, the air intake was located in the nose with the pilots seat in prone position above it. The turbojet engine was located at the fuselages end, the conventional tail plane was mounted on a boom protruding from the fuselages end. For take-off probably a trolley was used, the landing was provided by means of a retractable skid. No further facts or details are reported. (Ref.: 22 and

J. R. Smith, Antony L. Kay: German Aircraft of the Second World War. Putnam & Company, London, 1972)

Horten Ho XIIIb, (Sharkit Models, Resin)

TYPE: Supersonic fighter, project

ACCOMMODATION: Pilot and Navigator/radar-operator

POWER PLANT: One BMW 003R combined turbojet, rated at 1.000 kp thrust and one BMW 109-718 liquid fuel rocket, rated at 410 kp thrust

PERFORMANCE: 1.118 mph (estimated)

COMMENT: By 1943, the Horten brothers were discussing the possibility of supersonic flight. While this remained unchartered territory, the decided to experiment with a highly swept glider that would provide an understanding of slow speed handling with a highly swept configuration that might be capable of reaching or exceeding Mach 1.
The glider was designed as Horten Ho XIIIa and construction is believed to have begun in early 1944. The aircraft used wings from the Horten Ho III attached to a new central section which provided a span of 40 ft and a sweep of 60 degrees. The design was very clean with few protrusions apart from a dorsal spoiler and there were no vertical control surfaces. The pilot was housed in a gondola arrangement, mounted below the center section, with access via a tail cone cover. In an emergency, the pilot would jettison his cover and slide out the back of the unit.
The first test flight took place at Göttingen Airfield on 27 November 1944 and further 19 flights were conducted at Homberg by test pilot Hermann Strebel who reported that the glider handled well although he complained about poor roll control, limited forward visibility and landing problems caused by the extended skid.
Nevertheless, the Hortens were contemplating the construction of a more advanced prototype that would be powered by an Argus As10 piston engine in a pusher configuration. But this never came about ans at the end of the war a group of Russian soldiers who had just been liberated from a prison camp discovered the Ho XIIIa and destroyed it.  Furthermore, all the plans and research material for this project vanished without a trace. It now appears that the Ho XIIIb was the anticipated final development of this program and it was expected to have a supersonic performance under certain conditions. Looking very much like an advanced Lippisch design, this fighter would have been about the same size as the HoXIIIa with the same 60 degrees wing sweep. But unlike the glider there would have been a substantial upright fin containing the cockpit in very similar fashion to the proposed supersonic Lippisch P. 13a.
This similarity has often been remarked on although Reimar Horten denied any knowledge of Lippisch’s work during this time in post-war London. However, this seems highly unlikely and there was almost certainly wartime contact between the Hortens and Lippisch. The supersonic Ho XIIIb would have been powered by mixed propulsion system. This could have been either a BMW 003R combined turbojet linked to a BMW 718 rocket engine or a Heinkel/Hirth HeS 011 turbojet and a supplementary Walter rocket engine.
Presumably, a two seater version of the supersonic Horten Ho XIIIb was on the drawing board when in 1945 the “Third Reich” collapsed.

Bill Rose: Secret projects. Flying wings and Tailless Aircraft, Midland Press, Reprint of Ian Allan Publishing Ltd., Hersham, Surrey KTI24RG, 2010.

Focke-Wulf Fw 031 0239/01 (3 x 1000 Bomber Project A), (Unicraft Models, Resin)

TYPE: Fast medium bomber

ACCOMMODATION: Pilot only

POWER PLANT: Two Heinkel-Hirth HeS 011 turbojet engines, rated at 1,300 kp each

PERFORMANCE: 621 mph at 13,000 ft

COMMENT:  In 1944, Focke-Wulf created three designs of a bomber using two Heinkel-Hirth He S 011 turbojets. These bombers were known under the name of the 1000x1000x1000 Bomber-Projekt and were under the direction of Dipl.-Ing. H. von Halem and D. Küchemann. The designation meant that the aircraft could carry a 1000 kg (2205 lbs) bomb load 1000 km (621 miles) and fly at 1000 km/h (621 mph).
The first design under Focke-Wulf’s design number 031 0239/01 (Projekt A) was for a fairly conventional layout. The fuselage was long and tapered aft of the wing leading edge. Fuel was carried in several tanks located within the fuselage. The wings were thin and swept back at 35 degrees . Two Heinkel-Hirth He S 011 turbojet engines each developing 1300 kg of thrust were slung beneath the wings. Although the engines would cause more drag in this location, maintenance accessibility would be improved and a shorter design time would be achieved. The tail planes were also swept back; this along with the wing sweep and the fuselage thinning aft of the wing leading edge would help achieve the Mach number of .90.  The main gear are mounted just inboard of the jet nacelles and retracted in and forward; the nose gear was beneath the cockpit and retracted to the rear.  A single pilot sat in a cockpit located in the nose and afforded fairly good visibility. No armament was planned at this stage, and the bomb load of 1000 kg was carried in an internal bomb bay.
The second design under the Focke-Wulf  internal designation Fw P.031 0239/10 “3×1000 Bomber, Projekt B” was of a flying wing layout.
The third design  (Projekt C) again was of conventional layout similar to the first design (Projekt A
Since these designs would have taken several years to complete, the end of the war ended all development.

(Ref.: Herwig, Dieter and Heinz Rode: Luftwaffe Secret Projects, Ground Attack & Special Purpose Aircraft. Midland Publishing, Hinckley, LE10 3EY, England),

Messerschmitt Zerstörer-Projekt, Ausführung II, (Destroyer-project, Scheme II), (Unicraft Models, Resin)

TYPE: Destroyer, ground-attack aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One turbojet-engine, type unknown

PERFORMANCE: No data available

COMMENT: After the end of “WW II, when the Allied occupied Germany they found a huge amount of secret project documents. Among these were several unconventional designs from the Messerschmitt Company e. g. the so called “Animal Names” types. These were a single-turbojet  midget fighter “Libelle”  (Dragonfly) and two designs of the “Wespe I” and „Wespe II“ (Wasp) light fighters, a twin-engine fighter“ Me P.1079/18 „Schwalbe“(Swallow),  a bomber-transporter “Wildgans” (Brant) and two versions of a heavy ground-attacker “Zerstörer –  Projekt I” and „Zerstörer – Projekt II“ (Destroyer I and II).
As far as these latter are concerned these projects appear to consist of studies from the period 1941/42. But very unusual for Messerschmitt project drawings is that none of the dotted-outline turbojets matched  with the contures of any turbojets that were under development by BMW, Daimler-Benz, Heinkel-Hirth, Junkers and Porsche nor do the thrust figures quoted for them correpond to the known turbojet variants in production or development at that time.
An other confusing fact is that the Zerstörer ProjektII had the air intakes in the wing rootes and the sole turbojet engine was located in the rear fuselage. But additionally there were two openings on both sides the fuselage and the wings leading edges. This could be interpreted that the Zerstörer project II was powered by two turbojet engines.
On the other hand the high T-tailplane leads to the assumption of a later design period 1944/45. Focke-Wulf employed the T-taiplane for the first time in 1945 in the design of the Tank Ta 183. Messerschmitt, Heinkel and other aircraft manufacturers followed hastingly, as too little was known of the related flying characteristics of this type of tail surface. After the war the Allied quickly recognized its advantage and adopted this design feature.
Finally, a further factor indicating that the Zerstörer-designes were of later vintage is that both designes had a nosewheel tricycle undercarriage – a design feature that was first introduced in the Messerschmitt Me 262. Also, the rearward reclining seat and flush canopy blending into the fuselage nose contures  were not features of high-speed aircraft designes oft he 1941/42 period.
In conclusion and perhaps more likely is the fact that these designs are more after war fantasy than reality. So this comment is in contrast to the comment, given with the Messerschmitt Zerstörer-Projekt, Ausführung I, (Destroyer-project, Scheme I) on that website.

(Ref.: Herwig, Dieter and Heinz Rode: Luftwaffe Secret Projects, Ground Attack & Special Purpose Aircraft. Midland Publishing, Hinckley, LE10 3EY, England)

Messerschmitt “Projekt Wespe I” (Project Wasp I), (Unicraft Models, Resin)

TYPE: Short-range fighter, interseptor

ACCOMMODATION: Pilot only

POWER PLANT: One turbojet engine of unknown type

PERFORMANCE: No data available

COMMENT: The end of WW II saw a great amount of  secret project documents burned, captured or left to blow around empty hangars. Some companies documents were almost completely lost, others were scattered. After the war some of these seemingly reappeared but most likely many of these projects are imaginations. Some were relatively conventional, others were futuristic, but it is unknown whether these designs are from the period 1940/41 or from the time at the end of the WW II.
This is true for instance for Messerschmitt’s “Animal Names” types. These were a single-turbojet  midget fighter “Libelle”  (Dragonfly) and two designs of the “Wespe I” and “Wespe II” (Wasp) light fighters, a twin-engine fighter Messerschmitt Schwalbe (Swallow),  a bomber-transporter “Wildgans” (Brant) and two versions of a heavy ground-attacker “Zerstörer I” and “Zerstörer II” (Destroyer).
Both Messerschmitt “Wespe I” and “Wespe II” had swept-back wings, were to be powered by a single turbojet-engine and had a tricycle landing-gear. From this point of view these projects could be dated to the end of the war.
In contrary, unusual for these Messerschmitt project drawings is that none of the dotted-outline turbojets in each of the drawings matches with the contours of any turbojets that are under development or production by BMW, Daimler-Benz, Heinkel-Hirth and Junkers, nor do the thrust figures quoted for them correspond to the known turbojets variants. Gas turbine development in Germany was concerned from the very beginning with the axial-flow type, save for the radial-flow turbojets developed by Dr. ing. von Ohain. This leads to the conclusion that at beginning of the war Messerschmitt possessed no documentation on turbojet development or installation plans hypothesizing that all these “Animal Name” projects could also be dated to the early 1940’s.
In conclusion, perhaps and more likely are these designs the product more of fantasy than reality.

(Ref.: Herwig, Dieter and Heinz Rode: Luftwaffe Secret Projects, Ground Attack & Special Purpose Aircraft. Midland Publishing, Hinckley, LE10 3EY, England)

Heinkel He 219B-1”Uhu” (Eagle-Owl), III./NJG3, (Dragon Models)

TYPE: Night Fighter

ACCOMMODATION: Crew of three

POWER PLANT: Two Junkers Ju 222 liquid-cooled radial engines, rated at 2,500 hp each, resp. two Daimler-Benz DB 603 liquid-cooled engines, rated at 1,900 hp each

PERFORMANCE: 435 mph

COMMENT: The Heinkel He 219 „Uhu“ (Eagle-Owl) was a night-fighter that served with the German Luftwaffe in the later stages of World War II. A relatively sophisticated design, the He 219 possessed a variety of innovations, including Lichtenstein SN-2 advanced VHF-band intercept radar, also used on the Junkers Ju 88G and the Messerschmitt Bf 110G night fighters. It was also the first operational military aircraft to be equipped with ejection seats and the first operational German World War II-era aircraft with tricycle landing gear. Had the „Uhu“ been available in quantity, it might have had a significant effect on the strategic night bombing offensive of the Royal Air Force; however, only 294 of all models were built by the end of the war and these saw only limited service
By the end of 1944, the Luftwaffe had accepted 214 Heinkel He 219As, but during the previous November, the promulgation oft he „Jäger-Notprogramm“ (Fighter Emergency Programme) had sounded death knell for all twin piston-engine fighters with the sole exception of the Dornier Do 335 Pfeil. Ernst Heinkel tacitly ignoring the RLM edict and finalized an assembly line for the fighter at Oranienburg.
Prior to the creation of the „Jäger-Notprogramm“ several variants of the basic He 219 had reached advanced development and even initial production stages. The follow-on series to the He 219As in service was to be the He 219B fitted with the new, but troublesome 2,500 hp Junkers Jumo 222A/B 24 cylinder engines – a multibank, liquid-cooled inline engine, with six rows of cylinder blocks having four cylinders each—which would have allowed the He 219 to reach 440 mph, each of which were almost the same displacement in their A/B (supercharged) and E/F (supercharged with intercoolers) versions and each only very slightly heavier, compared to the Pratt & Whitney R-2800 Double Wasp radial engines in the American Northrop P-61 „Black Widow“ night fighter. The He 219B wing was also to have had an increased span of 22.06 m for better high altitude performance. The Jumo 222 did not reach production status, with just under 300 examples built in at least three differing displacement sizes. Only a few test machines were ever fitted for the engines; some additional air frames were built with the enlarged wing. These examples were slated to fly with high-altitude versions of the standard DB 603 powerplants in place of the troubled Jumo 222 multibank powerplants, but only one or two test machines ever flew with them.
It was proposed to install the Junkers Jumo 222 in a high-altitude three-seat model, the Heinkel He 219B-1, but the non-availability of the Junkers engine necessitated the installation of the Daimler-Benz DB 603Aa in a sole exemple of this variant completed and tested. This He 291B-1 had an aerodynamically refined cockpit canopy, a lengthened fuselage, and an extended wing spanning. Flight testing was cut short when, during the second landing, the starboard undercarriage leg collapsed and the aircraft suffered such intensive damage that it had to be scrapped.
The second B-series, the Heinkel He 219B-2, was intended specifically for anti-Mosquito operations, and was similar in concept of the He 219A-6 in being stripped of virtually all armor.  Employing an He 219A-5 two-seat fuselage married to a long-span B-series wings it was powered by Daimler-Benz DB 603 engines with TK 13 turbo-superchargers, but only few additionally aircraft of this type were hurriedly completed. These were placed in operational service with a forward-firing armament of two 20-mm MG 151 cannon in the wing roots, and  two 30-mm MK 108 cannon  in a „Schräge Musik“ installation.
The Heinkel He 219B-3 was similar to its predecessor apart from the reinstatement of ventral tray armament comprising two 30-mm MK 108 and two 20-mm MG 151 cannon, and this, too, was to have been powered by two Daimler-Benz DB 603L engines, but while still under construction, Heinke received  a directive from the Technischen Amt to await delivery oft he Junkers Jumo 222 engines for installation in this aircraft. In the event, the Junkers power plants never arrived and, in consequence, the He 218B-3 never left the ground (Ref.: 8).

Messerschmitt Me P. 1106/II (RS-Models, Resin)

TYPE: Fighter, Interceptor, Project

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel-Hirth HeS 011 turbojet engine, rated at 1.300 kp thrust

PERFORMANCE: No data available

COMMENT: The Messerschmitt Me P.1106 was a proposed German fighter aircraft project near the end of WW II. It was intended as an improvement to the Messerschmitt Me P. 1101.
On December 15, 1944 Messerschmitt design team decided to submit another design alongside the Me P.1101 – the Messerschmitt Me P. 1106. This was an advanced update on the final version of the Me P.1092/5 which had been drafted in July 1943 but also bore some similarities to the Me P.1101.
The Messerschmitt Me P. 1106 was redesigned several times. It had a nose air intake and fuselage mounted turbojet-engine. The wings of each design were swept back at 40 degrees. The planned powerplant was a Heinkel-Hirth HeS 011 turbojet engine, and armament was to be two 30 mm MK 108 cannons
The first version (Me P. 1106/I) had a short fuselage and a T-tail with the cockpit faired into the vertical stabilizer, similar to the Lippisch Li P.13a.
The redesigned version shown here  (Me P. 1106/II), had a very short fuselage, too, the vertical stabilizer was changed to a tail plane of butterfly style and the cockpit was housed far aft. This odd shape apparently gave the best aerodynamic performance Messerschmitt and his team had yet achieved but the disadvantage was a poor visibility for the pilot.
A third and final design (Me P. 1106/III) had a longer and slim fuselage with a V-tail plane and the cockpit moved slightly forward.
All projects of the Messerschmitt Me P. 1106 were abandoned since the performance of the Me P.1101 had not been improved on (Ref.: 17, 22, 24).

Blohm & Voss Bv P.202 (Unicraft Models, Resin)

TYPE: Variable-wing fighter. Project

ACCOMMODATION: Pilot only

POWER PLANT: Two BMW 003 turbojet engines, rated at 850 kp each

PERFORMANCE: No data available

COMMENT: The Blohm & Voss P 202 was an unusual design study for a variable-geometry turbojet fighter during World War II. It was the first design to incorporate a slewed wing (also known as an oblique or scissor wing) in which one side swept forward and the other back.
During WW II in Germany intensive work has been done in concern of influence back-swept wings on high-speed aircraft. Calculations as well as wind-tunnel tests showed that swept wings could minimize the effects of compressibility as the speed of sound was approached. But sweeping the wings causes problems of its own, especially at the low speeds used for takeoff and landing. A variable-sweep mechanism was one possible solution but it would be complex, heavy and expensive. It also has problems with movement of the centre of lift. Both backwards and forwards sweep were investigated and they proved to have opposite disadvantages. Sweeping one wing forwards and the other back would balance out the aerodynamic problems and a one-piece slewed wing approach would not need such a complex sweep mechanism.
In 1944, with their project Bv P.202 the design team of Blohm & Voss tried to compensate the disadvantage of swept-back wings a low speed by turning a single full-span wing in its yaw axis so that one side sweeps back and the other side sweeps forward. The shoulder mounted wing was shaped as a disc in the mid-wing section. During take-off and landing as well as at lower speed the wing was in rectangular position with all buoyancy forces such as airbrakes and spoilers still effective. At high speeds the whole wing was slewed at 35° that the left wing showed forward and the right wing backward. The wing span was 39.4 ft when unswept and 32.8 ft when fully swept. Because the fuselage was filled with wing-rotation machinery, the landing gear extended down from the wing main spar, and was very long, while the nose gear retracted backwards into the fuselage. The Blohm & Voss Bv P.202 was powered by a pair of BMW 003 turbojets, slung underneath the fuselage center section and exhausting behind the wing. Provision for three forward-firing cannon was made in the nose. Due to the war situation in Germany the project never left the drawing board (Ref.: 18, 24).