Galleries

Messerschmitt Me 609 (Huma-Models)

TYPE: Fighter, Fighter bomber

ACCOMMODATION: Pilot only

POWER PLANT: Two Daimler-Benz DB 603 liquid-cooled engines, rated at 1,726 hp each

PERFORMANCE: 472 mph (estimated)

COMMENT: The Messerschmitt Me 609 was a short-lived WW II German project which joined two fuselages of the Messerschmitt Me 309 fighter prototype together to form a heavy fighter.
The project was initiated in response to a 1941 RLM (Reich Air Ministry) requirement for a new “Zerstörer” (destroyer, or heavy fighter) to replace the Messerschmitt Bf 110 in a minimum time and with a minimum of new parts The new design would use components from existing aircraft, thus not disrupting existing production. After the cancellation of the Messerschmitt Me 309 project in 1943, work was continued using it as a basis for other designs. One of these reworked designs was for the Me 509; another was for the 609, which was basically two Me 309 fuselages joined with a new center wing section. Messerschmitt was also working on and had completed a twin-fuselage Bf 109, known as the Me109Z, but the prototype was destroyed before flight testing.
Two Me 309 fuselages were to be joined with a constant chord center wing section, into which two inboard landing gears retracted. The outboard landing gears were resigned, two nose wheels retracted to the rear and rotating 90 degrees to lie flat beneath the engines. This resulted in an unusual four-wheel arrangement.  Power was to be supplied by two Daimler Benz 603 or 605 12 cylinder inverted V liquid -cooled engines. The pilot sat in a cockpit located in the port fuselage, with the starboard cockpit canopy being faired over.
Two versions were envisioned: a heavy fighter (“Zerstörer”) and a high-speed bomber (“Schnellbomber”, fast bomber). In the fighter version, two MK 108 30 mm cannon and two MK 103 30mm cannon were projected as the armament, with a provision for two additional MK 108 30mm cannon mounted beneath the center wing section or under the outer wing sections. In addition, either one SC 500 or two SC 250 bombs could be carried, also beneath the center wing section. The fast bomber version would have reduced armament, with only two MK 108 30mm cannon were to be installed. Extra fuel (1500 kg) could be carried in the faired over starboard cockpit, and the bomb load was to consist of two SC 1000 bombs which were carried beneath each fuselage.
Finally, a two seater night fighter variant was envisioned with FuG 220 “Lichtenstein SN-2” antennas mounted at the outer wings. The pilot sat in the port and the radar operator in the starboard fuselage.
Even though it was calculated that many components of the Me 309 could be used (fuselage, engines, equipment, 80% of the wings), by the time this design began to jell, the Messerschmitt Me 262 turbojet fighter was proving to be the plane of the future, and could take over all roles for which the Me 609 was designed. Thus, the Me 609 project was no longer pursued after 1944 (Ref.: 24).

Lavochkin La-5FN, 813. IAP, (AML-Models)

TYPE: Fighter

ACCOMMODATION: Pilot only

POWER PLANT: One Shvetsov M-82FN radial piston engine, rated at 1,960 hp

PERFORMANCE: 403 mph at 20,505 ft

COMMENT: The Lavochkin La-5 was a Soviet fighter aircraft of World War II. It was a development and refinement of the LaGG-3, replacing the earlier model’s inline engine with the much more powerful Shvetsov Ash-82 radial engine. During its time in service, it was one of the Soviet Air Force’s most capable types of warplane, able to fight German designs on an equal footing.
The La-5’s heritage began even before the outbreak of war, with the LaGG-1, a promising yet underpowered aircraft. The LaGG-3 was a modification of that design that attempted to correct this by both lightening the airframe and fitting a more powerful engine. Nevertheless, this was not enough, and the lack of power remained a significant problem.
In early 1942 the LaGG-1 and -3’s designer Vladimir Gorbunov attempted to correct this deficiency by experimentally fitting a LaGG-3 with the more powerful Shvetsov Ash-82 radial engine. Since the LaGG-3 was powered by an inline engine, they accomplished this by grafting on the nose section of a Sulhoi Su-2 (which used this engine). By now, the shortcomings of the LaGG-3 had caused Lavochkin to fall out of Joseph Stalin’s favour, and factories previously assigned to LaGG-3 construction had been turned over to building the rival Yakovlev Yak-1 and Yak-7. The design work, which required that the LaGG-3 be adapted to its new engine and still maintain the aircraft’s balance, was undertaken by Lavochkin in a small hut beside an airfield over the winter of 1941–1942, on a completely unofficial basis.
When the prototype took flight in March, the result was surprisingly pleasing – the fighter finally had a power plant that allowed it to perform as well in the air as it had been supposed to on paper. After flying, the LaG-5 (the change in name reflecting that one of the original LaGG designers, Mikhail I. Gudkov, was no longer with the program), Air Force test pilots declared it superior to the Yak-7, and intensive flight tests began in April.
The prototype was put in mass production almost immediately in factories located in Moscow and in the Yaroslav region. Design changes for main production La-5 models included slats to improve all-round performance. While still inferior to the best German fighters at higher altitudes, the La-5 proved to be every bit their match closer to the ground. With most of the air combat over the Eastern Front taking place at altitudes of under 16,404 ft, the La-5 was very much in its element.
Further refinement of the aircraft involved cutting down the rear fuselage to give the pilot better visibility, making this version the La-5F. Later, a fuel-injected engine, a different engine air intake and further lightening of the aircraft led to the designation La-5FN that would become the definitive version of the aircraft. A full circle turn took 18–19 seconds. Altogether, 9,920 Lavochkin La-5s of all variants were built, including a number of dedicated trainer versions, designated La-5UTI. Very late La-5FN production models had two 20mm Berezin B-20 cannon installed in the cowling in place of the heavier two 20mm ShVAK (both were capable of a salvo weight of 3.4 kg/s). Further improvements of the aircraft would lead to the Lavochkin La-7.
A number of La-5s continued in the service of Eastern Bloc nations after the end of WW II (Ref.: 24).

Braunschweig LF 1 ‘Zaunkönig’ (“Wren”) with Panzerfaust 100 (Bazooka), (Luedemann Models)

TYPE: Short Take-Off and Landing aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Zündapp Z9-092 air-cooled, rated at 50 hp

PERFORMANCE: 88 mph

COMMENT: The Braunschweig LF-1 “Zaunkönig”, (“Wren”, LF = Langsames Flugzeug, Slow aircraft), is a Short Take-Off and Landing single-seat light aircraft designed in 1939 by Hermann Winter  and some of his students from the Technische Universität Braunschweig (Technical University of Brunswick), Lower Saxony, Germany, as a fool-proof trainer for novice student pilots to experience solo flight. H. Winter was a former chief engineer at the Bulgarian company DAR (Drzhavnata Aeroplanna Rabotilnitsa, where he created a line of aircraft and gliders for the Bulgarian Army.
The LF-1 is a parasol wing monoplane with a high set tail-plane, powered by a Zündapp Z 9-092 engine delivering 50 hp, able to operate from a 330 ft airstrip. The two-piece wings are set at 16° dihedral and are supported by a pair of V-cabane struts and V-struts either side from approximately half-span to the lower center fuselage. Full span leading edge slats extend automatically and full span trailing edge flaps / drooping ailerons can be extended manually by the pilot. The fixed tailwheel undercarriage attaches to the fuselage with long struts and oleo pneumatic shock absorbers.
It was a proof-of-concept design for a ‘fool-proof’ trainer intended for novice pilots with only one hour of ground instruction, the hour being reduced to five-minutes for those who had already flown gliders, and was intended to be impossible to either stall or spin.
The first prototype, the LF-1 V1, was built in 1940 and made its maiden flight, piloted by Winter himself, in December 1940. Test flights stopped in November 1942 after part of the wing ruptured causing the aircraft to crash. In 1943 a second prototype, the V2, was built, receiving the civil registration D-YBAR.
In early 1945 the aircraft was tested for military applications and was once even armed with a Panzerfaust 100 recoilless anti-tank weapon (Bazooka).
At the end of WW II the LF-1 was taken to the Royal Aircraft Establishment (RAE) at Farnborough for slow flying tests; given the British serial VX190, where amongst others, it was flown by Eric “Winkle” Brown CO Aero Flight, the aircraft also being soloed by the then-head of the RAE Aerodynamics Section, Handel Davies, after half an hour of ground instruction, and whose only previous piloting experience was as a pupil in a dual-control Miles Magister.
Encouraged by the positive British reviews Hermann Winter decided to build three more LF-1 aircraft. The construction started in 1954 and it was the first new aircraft in Germany after the war to receive a certificate by the Luftfahrt-Bundesamt (LBA) in Braunschweig (Ref.: 24).

Lockheed P-38M “Night Lightning”, (Revell)

TYPE: Night and bad weather fighter

ACCOMMODATION: Crew of two, pilot and radar operator

POWER PLANT: Two Allison V-1710-111/113 liquid-cooled turbo-supercharged engines, rated at 1,600 hp each

PERFORMANCE: 410 mph at 25,000 ft

COMMENT: The Lockheed P-38 „Lightning“ is a World War II–era American piston-engined fighter aircraft. Developed for the United Stated Army Air Corps, the P-38 had distinctive twin booms and a central nacelle containing the cockpit and armament. Allied propaganda claimed it had been nicknamed the fork-tailed devil (German:„Gabelschwanz-Teufel“) by the Luftwaffe and „two planes, one pilot” by the Japanese. The P-38 was used for aerial combat of every sort including interception, dive bombing, level bombing, ground attack, night fighting, photo reconnaissance, radar and visual pathfinding for bombers and evacuation missions, and extensively as a long-range escort fighter when equipped with drop tanks under its wings.
Adaption oft he Lightning as a night fighter, to fill the gap in the USAAF inventory caused by late delivery oft he Northrop P-61 „Black Widow“, accounted fort the last-designated variant oft he Lockheed twin, the P-38M, although the use of Lightnings in nocturnal role actually originated at squadron level rather than as a factory-designed innovation. Detachments oft he 6th Fighter Squadron flying Douglas P-70s in New Guinea and at Guadalcanal, both operated P-38Gs in this role, and the New Guinea detachment actually converted two Lightnings to two-seatres, carrying SCR-540 radar in a drop tank; the unit was, however, disbanded before these aircraft could be tested in combat. Unmodified P-38Gs and P-38Js were used as night fighters in New Guinea and on Guadalcanal with a few successful interceptions recorded.Two single seat P-38Js fitted with APS-4 radar were used with a degeree of sucess by the 547th Night Fighter Squadron operating in the Philippines in late 1944/early 1945.
While these operational innovations had been going on, a P-38J had been adapted at Wright Field to serve as a test-bed for AN/APS-4 radar, installed in the first instance in a pod under the fuselage behind the nose wheel. As it was struck by cartridges ejected when the nose gund were fired, this pod was later moved to an underwing position, outboard oft the starboard engine. Several similar radar conversions of P-38Js, including „piggy back“ two seaters were than made fort the 481st NF Operational Training group, which conducted field trials, and when the USAAF then contracted with Lockheed, in late 1944, to convert a P-38L as a night fighter, carrying a radar operator in a second cockpit behind and above the pilot, and an AN/APS-6 radar in a long pod under the nose ahead oft he nosewheel doors. The headroom in the rear cockpit was limited, requiring radar operators who were preferably short in stature.
The first flight with all modifications in place was made on February 1945, and although only six flights were made before this aircraft was destroyed, the USAAF then ordered 75 similar P-38L conversions, to be redisignated Lockheed P-38M „Night Lightning“. Testing oft he first P-38M began in July 1945, and five of these aircraft arrived at a training establishment at Hammer Field, Ca, in the same month. Found to have a better overall performance than the Northrop P-61B „Black Widow“ but to suffer some operational limitations, the P-38M saw some combat duty in the Pacific towards the end of WW II but none engaged in combat (Ref.: 9, 24).

Heinkel He 162S (A+V Models, Resin)

TYPE: Trainer glider for Heinkel He 162 turbojet aircraft

ACCOMMODATION: Crew of two, Pilot and student

POWER PLANT: None

PERFORMANCE: No data available

COMMENT: The Heinkel He 162 „Volksjäger“ (“People’s Fighter”), the name of a project of the „Jägernotprogramm“ (Emergency Fighter Program) design competition, was a German single-engine, jet-powered fighter aircraft fielded by the Luftwaffe in WW II. It was designed and built quickly and made primarily of wood as metals were in very short supply and prioritised for other aircraft. „Volksjäger“ was the RLM’s (Reich Air Ministry’s) official name for the government design program competition won by the He 162 design. Other names given to the plane include „Salamander“, which was the codename of its construction program, and „Spatz“ (“Sparrow”), which was the name given to the plane by Heinkel.
The „Volksjäger“ needed to be easy to fly. Some suggested even glider or student pilots should be able to fly the jet effectively in combat, and indeed had the Heinkel He 162 gone into full production, that is precisely what would have happened. After the war, Ernst Heinkel would say, “[The] unrealistic notion that this plane should be a ‘people’s fighter,’ in which the „Hitler Jugend“ (Hitler Youth), after a short training regimen with clipped-wing two-seater gliders like the DFS „Stummel Habicht“, could fly for the defense of Germany, displayed the unbalanced fanaticism of those days.”
The clipped-wingspan DFS „Habicht“ (Goshawk) models had varying wingspans of both 8 m or 6 m, and were used to prepare more experienced Luftwaffe pilots for the dangerous Messerschmitt Me 163B „Komet“ rocket fighter – the same sort of training approach would also be used for the „Hitler Youth“ aviators chosen to fly the jet-powered „Volksjäger“ design competition’s winning airframe design.
Besides the „Stummelhabicht“ a standard-fuselage length, unarmed BMW 003E-powered two-seat version (with the rear pilot’s seat planned to have a ventral access hatch to access the cockpit) and an unpowered two-seat glider version, designated the Heinkel He 162S („S“ for Schulen, Training establishment), were developed for training purposes. Only a small number were built, and even fewer delivered to the sole He 162 „Hitler Youth“ training unit to be activated in March 1945 at an airbase at Sagan (now Poland). The unit was in the process of formation when the war ended, and did not begin any training; it is doubtful that more than one or two He 162S gliders ever took to the air (Ref.: 24).

Yakolev Yak-7V, Normandie-Niemen Fighter Regiment (Valom)

TYPE: Fighter, Fighterbomber, Trainer

ACCOMMODATION: Crew of one or two, pilot or trainer and student

POWER PLANT: One Klimov M-105PA V-12 liquid-cooled engine, rated at 1,050 hp

PERFORMANCE: 355 mph at 16,000 ft

COMMENT: The Yakovlev Yak-7 was developed from the earlier Yakolev Yak-1 fighter, initially as a trainer but converted into a fighter. As both a fighter and later reverting to its original training role, the Yak-7 proved to be a capable aircraft and was well liked by air crews. The Yak-7 was simpler, tougher and generally better than the Yak-1.
In 1939, A. Yakolev designed a tandem-seat advanced trainer, originally designated “I-27” and then “UTI-26”, offered along with the original I-26 proposal that became the Yak-1. The “UTI” (Uchebno Trenirovochnyi Istrebitel, Training fighter) was intended to give pilots-in-training experience on a high-performance aircraft before transitioning to a fighter. With development work started in 1940, the UTI-26 differed from its predecessor in its larger span wing being placed farther back for balance as well as having two cockpits with dual controls and a rudimentary communication system. It was armed with a single 7.62 mm ShKAS machine gun in the cowling, mainly for use in training, but Yakovlev envisioned a multi-purpose aircraft that could also undertake courier and light transport duties at the front.
The first production aircraft known as Yak-7UTIs retained a retractable main landing gear, but beginning in the summer of 1941, a fixed landing gear variant, the Yak-7V (Vyvozoni = Familiarization) was substituted. The factory reasoned that production would be simplified and that reduced performance would not be detrimental for a trainer. Yak-7UTIs and Yak-7Vs were also equipped with skis for winter operations.
The Yak-7 proved to be an effective close support fighter although the first two-seaters were considered nose-heavy. Consequently, the factory introduced a rear cockpit fuel tank. Pilots complained about the fuel tank’s vulnerability since it was unarmored, and it was usually removed in the field. There were constant changes to the design based on combat observations including a definitive single-seat variant, the Yak-7B, which was produced in large numbers.
Generally, the Yakolev Yak-7 pleased its pilots. They reported that it was easy to fly at all altitudes, stable and easy to maintain and although it did not climb as quickly as a Messerschmitt Bf 109, it was as maneuverable and fast, except in the vertical plane. But defects were also noted: there was too much drag from the radiators, the canopy glass was of bad quality; the pilot was not protected enough, taking-off and landing distances were too long and, above all, it was underpowered.
Yakovlev suggested to Klimov, the engine builder, some modifications that resulted in the M-105PF which was 130 hp more powerful. With this modified engine, the Yak-7B top speed was of 372 mph, it climbed much faster up to 16,404 ft and it was more maneuverable both in the horizontal and the vertical planes. But because the rear tank was removed, its range was reduced and the center of gravity was moved too forward, while M-105 defects (glycol and oil overheating, oil leaks etc.) persisted.
In total 510 two-seat trainer were built, 87 were converted from Yak-7B (Ref.: 24).

Messerschmitt “Projekt Wespe II” (Project Wasp II), (Unicraft Models, Resin)

TYPE: Short-range fighter, fighter bomber

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel/Hirth HeS 011 turbojet engine, rated at 1,300 kp thrust

PERFORMANCE: No data available

COMMENT: This late WW II Messerschmitt „Projekt Wespe” (Wasp) is mostly unknown, and information on it is incomplete. Two seperate fuselages were designed for the „Wespe”:
Design I had the cockpit located midway along the fuselage, and the single He S 011 jet engine was located at the rear and was fed by a long air duct. A long tapering single fin and rudder was chosen, with the tail planes located about halfway up.
Design II had the cockpit located far forward on the fuselage, and the single He S 011 turbojet was mounted mid fuselage. It was fed by an air duct which wrapped under the forward fuselage, and exhausted below a tail boom with a V- Tail unit.
Both designs used a tricycle landing gear arrangement, with the main gear retracting inwards from the wing and the front gear retracting forwards. No armament was specified, but at this stage in the war two MK 108 30mm cannon would probably have been fitted. Priority for both designs was the use of non-strategic material as much as possible, reduction of time for maintenance and adequate flying characteristics (Ref.: 17).

Fairey ‘Seafox’ Mk.I, (Matchbox)

TYPE: Reconnaissance floatplane

ACCOMMODATION: Crew of two

POWER PLANT: One Napier Rapier air-cooled engine, rated at 395 hp

PERFORMANCE: 124 mph

COMMENT: The Fairey Seafox was a 1930s British reconnaissance floatplane designed and built by Fairey for the Royal Fleet Air Arm. It was designed to be catapulted from the deck of a light cruiser and served in the WW II. Of the 66 built, two were finished as landplanes.
The Fairey Seafox was built to satisfy Air Ministry Specifications S.11/32. The first of two prototypes appeared in 1936, first flying on May 1936, and the first of the 64 production aircraft were delivered in 1937. The flights were organized as 700 Naval Air Squadron of the Fleet Air Arm.
The fuselage was of all-metal monocoque construction, the wings being covered with metal on the leading edge, otherwise fabric. It was powered by a 16-cylinder 395 hp air-cooled Napier Rapier H engine. It cruised at 106 mph, and had a range of 440 mi.
Although the Seafox handled well, it was criticized for being underpowered, engine cooling was poor and landing speeds were higher than desired.
In 1939, a Seafox played a part in the Battle of River Plate against the German pocket battleship “Admiral Graf Spee”, by spotting for the naval gunners. This ended with “Graf Spee’s” scuttling and destruction.
Seafoxes operated during the early part of the war from the cruisers HMS “Emerald”. “Neptune”, “Orion”, “Ajax”, “Arethusa” and “Penelope” and the armed merchant cruisers HMS “Pretoria Castle”, “Asturias” and “Alcantara”. The floatplanes remained in service until 1943 (Ref.: 24).

Junkers Ju 288C V103 (Huma Models)

TYPE: Medium bomber

ACCOMMODATION: Crew of four

POWER PLANT: Two Daimler-Benz DB 610A-1/B-1 liquid-cooled engines, rated at 2,950 hp each

PERFORMANCE: 407 mph at 22,300 ft

COMMENT: Prior to the receipt of RLM instructions to prepare for production of the Daimler-Benz DB 606-powered Junkers Ju 288, the Junkers construction bureau had introduced some major changes in the basic design of the bomber which had resulted in the Ju 288C intended specifically for the Daimler-Benz engines. One of the most noticeable external changes was the provision of a redesigned and elongated nose which increased overall length substantially. Defensive armament was supplemented by a ventral barbette aft of the bomb-bay, instrumentation was greatly improved and the structure was strengthened.
The first C-series prototype, the Ju 288 V101 with DB 606A/B engines, was completed in August 1942, this being followed within a few weeks by the similar Ju 288 V102.
The Ju 288C programme continued with high priority, production standards were finalized, and modifications dictated by flight test programme, together with production features, were embodied by the next prototype, the Ju 288C V103. Fitted with the more powerful DB 610 engines and introducing provision for underwing weapons racks, the Ju 288C V103 had the full complement of four remotely-controlled gun barbettes, and was flown for the first time in spring of 1943.
The Junkers Ju 288C V103 was intended as the first production prototype for the Ju 288C-1, and was rapidly followed by the Ju 288 V104 and V105 which were flown in May 1943, and the V106 which flew in June, these all being powered by DB 610A/B engines and differing only in minor items of equipment. At this time, it was proposed to manufacture the bomber in three versions which differed primarily in the defensive armament fitted. The Ju 288C-1 was to have a chin, dorsal and ventral barbettes each mounting twin MG 131 machine guns, and a tail barbette mounting a MG 151 cannon; the Ju 288C-2 was to have had twin MG 151 cannon in each chin, dorsal and ventral barbettes, and either two MG 131s in tail barbette or four MG 131 in a manned tail turret, and the Ju 288C-3 was to have been a night bomber with defensive armament restricted to twin MG 131s in a ventral barbette.
Suddenly, in June 1943, Junkers was informed by the Technische Amt that the entire “Bomber B” programme had been abandoned owing to increasing shortages of strategic materials and the effect that the launching of a major production program for a new bomber would have on existing production programmes at a critical phase in the conflict. However, despite the cancellation of the programme, Junkers completed two additional machines, the Ju 288 V107 and V 108, which were flown in July 1943, other airframes on the assembly line being scrapped. Some flight testing of the Ju 288 was continued until the summer of 1944, by which time a least 17 of the 22 prototypes had crashed while engaged in flight development. With the termination of the test programme, several of the surviving Ju 288B- and C-series prototypes were transferred to the Luftwaffe, and fitted with ventral gun pods similar to that fitted to the Junkers Ju 88P-4 and mounting a single 50 mm BK 5 (KwK 39) cannon, these saw limited operational use during the closing stages of the conflict (Ref.:7).

Mikoyan-Gurevich MiG-3, 34 IAP (Italeri)

TYPE: Fighter and interceptor aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Mikulin AM-35A liquid-cooled engine, rated at 1,332 hp

PERFORMANCE: 314 mph at 25,590 ft

COMMENT: The Mikoyan-Gurevich MiG-3 was a Soviet fighter and interceptor aircraft used during World War II. It was a development of the Mikoyan-Gurevich MiG-1 by the Experimental Design Department of Factory No. 1 to remedy problems found during the MiG-1’s development and operations. It replaced the MiG-1 on the production line at Factory No. 1 on December 1940 and was built in large numbers during 1941 before Factory No. 1 was converted to build the Ilyushin Il-2.
The large number of defects noted during flight testing of the MiG-1 forced Mikoyan and Gurevich to make a number of modifications to the design. Testing was done on a full-size aircraft in the T-1 wind tunnel belonging to the Central Aero and Hydrodynamics Institute (TsAGI) to evaluate the problems and their proposed solutions. The first aircraft to see all of these changes applied was the fourth prototype of the I-200. It first flew on 29 October 1940 and was approved for production after passing its State acceptance trials. The first MiG-3, as the improved aircraft was named on December 1940, was completed same month and another 20 were delivered by the end of the year.
Changes included: the engine was moved forward, outer wing panel dihedral was increased by one degree to increase lateral stability, the back of the pilot’s seat was armored with an 8 mm plate (increased to 9 mm in later models, the supercharger intakes were streamlined, the main landing gear was strengthened and the size of the main wheels was increased and the canopy glazing was extended aft to improve the view to the rear which allowed for the installation of a shelf behind the pilot for an RSI-1 radio (later upgraded to an RSI-4)
Despite the teething problems with the MiG-3, a number of reports had been received about poor quality aircraft received by the regiments which pointed directly at the NII VVS (Naoochno-Issledovatel’skiy Institoot Voyenno-Vozdooshnykh Seel—Air Force Scientific Test Institute) as it was responsible for monitoring the quality of the aircraft delivered to the VVS (Soviet Air Force). After elimination of most problems the production started and 3,422 aircraft were built in different factories spread over the eastern parts of Soviet Union.
The MiG-3’s top speed of 398 mph at 23,622 ft was faster than the 382 mph of the German Messerschmitt Bf 109F-2 in service at the beginning of 1941 and the British Supermarine Spitfire Mk. V’s 375 mph. At lower altitudes the MiG-3’s speed advantage disappeared as its maximum speed at sea level was only 314 mph while the Bf 109F-2 could do 320 mph. Unfortunately for the MiG-3 and its pilots, aerial combat over the Eastern front generally took place at low and medium altitudes where it had no speed advantage.
MiG-3s were delivered to frontline fighter regiments beginning in the spring of 1941 and were a handful for pilots accustomed to the lower-performance and docile Polikarpov I-152 and I-153 biplanes and the Polikarpov I-16 monoplane. It remained tricky and demanding to fly even after the extensive improvements made over the MiG-1 Many fighter regiments had not kept pace in training pilots to handle the MiG and the rapid pace of deliveries resulted in many units having more MiGs than trained pilots during the German invasion. By June 1941, 1,029 MIG-3s were on strength, but there were only 494 trained pilots. However high-altitude combat of this sort was to prove to be uncommon on the Eastern Front where most air-to-air engagements were at altitudes well below 16,000 ft. At these altitudes the MiG-3 was outclassed by the Bf 109 in all respects, and even by other new Soviet fighters such as the Yakovlev Yak-1. Furthermore, the shortage of ground-attack aircraft in 1941 forced it into that role as well, for which it was totally unsuited.
Over the winter of 1941–42 the Soviets transferred all of the remaining MiG-3s to the Soviet Naval Aviation and Soviet Air Defence Forces (PVO) so that on 1 May 1942 none were left on strength with the VVS. By May 1942, Naval Aviation had 37 MiGs on strength, while the PVO had 323 on hand on May. By June 1944, the Navy had transferred all its aircraft to the PVO, which reported only 17 on its own strength, and all of those were gone by January 1945. Undoubtedly more remained in training units and the like, but none were assigned to combat units by then (Ref.: 24).