POWER PLANT: One Heinkel-Hirth HeS 011A turbojet engine, rated at 1,300 kp thrust plus one Walter HWK 509A-2 liquid-fuel rocket engine, rated between 300 and 1,500 kp thrust
PERFORMANCE: 593 mph (estimated)
COMMENT: In March 1943 the Focke-Wulf design team in Bremen initiated a series of studies for single-seat, single turbo jet powered fighters. “Entwurf 6”, also known as “Projekt VI”, was approved for mock-up construction in February 1944. The designation was later changed to “Projekt VII” and was given the code name “Flitzer“ (“Streaker” or “Dasher”). The design had mid-fuselage mounted wings with moderate sweepback (32 degrees), air inlets in the wing roots, twin booms, a high mounted tail plane and a tricycle landing gear. For high speed interception the single He S 011A turbojet was to be supplemented with a Walter HWK 509 A-2 bi-fuel rocket mounted below the turbojet engine. This arrangement was later revised and the rocket engine was eliminated. Projected armament consisted of two MK 103 30mm cannon or two MK 108 30mm cannon in the lower nose and two MG 151/20 20mm cannon in the wings. The Focke-Wulf “Flitzer”was well advanced in development, a full-size mock-up and some prototype sub-assemblies being completed. The project was eventually abandoned in favor of the Focke-Wulf Ta 183 “Huckebein”. In the meantime this design was in an advanced stage for series production.
POWER PLANT: Two Heinkel-Hirth HeS 011 turbojet engines, rated at 1.300 kp thrust each
PERFORMANCE: 663 mph at 26,250 ft (estimated)
COMMENT: This Focke-Wulf project was submitted by Professor Kurt Tank and his team in late 1944 for a twin-jet fighter which could be used as a fighter, fighter/bomber or long-range fighter, and was to be constructed in contrast to Tanks wooden Focke-Wulf Ta 154 entirely of metal. The RLM number of 250 was assigned to this project, which had previously been held by the land version of the huge Blohm & Voss Bv 238 flying boat.
The fuselage was wide, to accommodate the nose air intake for the twin Heinkel-Hirth He S 011 jet engines that were buried in the rear fuselage. The wings were swept back at 40 degrees, with the main landing gear retracting inboard into the wing. Mounted on a “boom”, the tail unit was set high in order keep it free from jet exhaust. A single pilot sat in a pressurized cockpit located near the nose. Armament consisted of four MK 108 30mm cannon or four MG 213 20mm cannon. Also, a droppable supplemental fuel container of 1000 kg could be carried by the long-ranged fighter variant as well as guided missiles.
Further testing and work would doubtless have been needed on this project, for example, the long air intake would have resulted in a loss of power, but this could have been overcome by using leading edge or wing root air intakes instead. Even though it would have been superior in climb and turning ability than the similar Messerschmitt “Hochgeschwindigkeitsjäger” (“High-speed fighter”) Me262 HG III, but the Focke-Wulf project would have been slower and would have a longer design-to-prototype time than the Me 262 HG III. All design work was ceased in order to concentrate on Focke-Wulf’s Ta 183 “Huckebein” single jet fighter. The information learned during this project’s design was later used in the Focke-Wulf Fw P.011-45 and Fw P.011-47 jet powered night and all-weather fighter projects.
The aircraft shown here is armed with two Henschel “Zitterrochen” (“Crampfish”) radio-controlled anti-ship missiles (Ref.: 17).
POWER PLANT: Two Daimler-Benz DB 603B liquid-cooled engines, rated at 1,860 hp at 6,900 ft each and one Daimler-Benz DB, rated at 1,475 hp driving “HZ-Anlange” supercharger in fuselage
PERFORMANCE: 379 mph at 45,900 ft
COMMENT: The Henschel Hs 130 was a high-altitude reconnaissance aircraft and bomber developed in WW II, but never used operationally, only existing as prototype airframes due to various mechanical faults.
Development of the Hs 130 began with two Hs 128 prototypes, which first flew on 11 April 1939, with the second prototype flying on 20 February 1940. Both prototypes were research aircraft, used for testing pressurized cabins, engine superchargers, and cantilever wings. Different engines powered the two prototypes; the V1 by Daimler-Benz DB 601s and the V2 by Junkers Jumo 201s. Both had fixed landing gear.
While trials of the two prototypes were not successful, the potential of a high altitude aircraft caught the attention of the commander of the Luftwaffe’s’s special reconnaissance unit. The interest in the Hs 128’s potential for high-altitude reconnaissance missions led the RLM (Reich Air Ministry) to instruct Henschel to continue development of the Hs 128 as a reconnaissance aircraft under the designation Hs 130A. Three prototype aircraft Hs 130As were built, the first flying on May 1940. Five pre-production Hs 130A-0 followed, being delivered in early 1941, and featured Daimler-Benz DB 601R engines – each with a single-stage supercharger, retractable landing gear, and a bay in the rear to house two Rb75/30 cameras for reconnaissance. The five Hs 130A-0s subsequently underwent trials and testing, which revealed significant problems with the aircraft performance, and reliability problems which prevented operational use.
Two further modified Hs 130A-0s were produced under the designation Hs 130A-0/U6 and featured a greater wingspan, Daimler-Benz DB 605B engines, Hirth superchargers, GM-1 nitrous oxide power boosting, and under-wing drop tanks, and being ready for flight testing in November 1943, demonstrating an absolute ceiling of 50,570 ft. The Hs 130A-0/U6 variant as well as the other Hs 130A-0s proved unsatisfactory and were never flown operationally.
Further development of the Hs 130 led to bomber variants. The planned Hs 130B was almost the same as the Hs 130A, but with a bomb bay in place of the camera bay, but was never built. The Hs 130C was built as a competitor for the “Bomber B” project, and was very different from the Hs 130A, featuring a shorter wing span, remotely controlled defensive armament, a more extensively glazed but still pressurized cabin and up to 4,000 kg of bombs. Further development of the Hs 130 as a reconnaissance aircraft continued with the Hs 130D, which was planned to have DB 605 engines and a complex two-stage supercharger, but was again unbuilt.
The Hs 130E was a re-working of the Hs 130A with the “Höhen Zentrale” or “HZ-Anlage” (High-altitude gear center) in place of conventional superchargers. The “HZ-Anlage” operated by a third engine, a Daimler-Benz DB 605T, was installed in the fuselage the only purpose of which was to power a large supercharger to supply air to the wing-mounted DB 603B engines. Another difference from the Hs 130A was the nose, which was extended forward to offset the weight of the “HZ-Anlage” engine in the fuselage. Also underwing fuel tanks could be fitted to provide fuel for three engines, and air scoops were fitted under the fuselage to supply the fuselage engine.
Three prototype Henschel Hs 130Es were built; Hs 130E V1 first flew in September 1942, and could reach 41,010 ft when “HZ-Anlage” was employed. Hs 130E V2, first flown in November 1942, was lost on its seventh flight due to an engine fire; V3 was built to replace it. An order for seven pre-production Hs 130E-0s followed, first flying in May 1943, together with a production order was placed for 100 Hs 130E-1s which were to have a remotely controlled defensive armament and provisions for underwing bombs. The order was cancelled due to continuing problems suffered by the Hs 130E-0’s “HZ-Anlage” system. A four engine version Hs 130F was planned, which was hoped to solve the problems with “HZ-Anlage”, by using four supercharged BMW 801 radial engines, but was never built (Ref.: 24).
POWER PLANT: Two BMW P.3302 (BMW 003) turbojet engines, rated at 550 kp thrust each, plus one Junkers Jumo 210G liquid-cooled engine, rated at 720 hp
PERFORMANCE: 350 mph
COMMENT: Several years before World War II, the Germans foresaw the great potential for aircraft that used the turbojet engine constructed by Hans Joachim Pabst von Ohain, engineer with the Heinkel Company, in 1936. After the successful test flights of the world’s first jet aircraft—the Heinkel He 178, Messerschmitt and his design bureau adopted the turbojet engine for an advanced fighter aircraft. As a result, the Messerschmitt Me 262 was already under development as “Projekt 1065” (P.1065) before the start of World War II. The project originated with a request by the Reichsluftfahrtministerium (RLM, Ministry of Aviation) for a turbojet aircraft capable of one hour’s endurance and a speed of at least 530 mph. Dr. Waldemar Voigt headed the design team, with Messerschmitt’s chief of development, Robert Lusser, overseeing.
Plans were first drawn up in April 1939, and the original design was very different from the aircraft that eventually entered service, with wing root-mounted engines, under development by BMW as 003 or by Junkers as Jumo 004, rather than podded ones, when submitted in June 1939. The progression of the original design was delayed greatly by technical issues involving the new turbojet engine. Because the engines were slow to arrive, Messerschmitt moved the engines from the wing roots to underwing pods, allowing them to be changed more readily if needed; this would turn out to be important, both for availability and maintenance. Since the BMW 003 jets proved heavier than anticipated, the wing was swept slightly, by 18.5°, to accommodate a change in the center of gravity. Funding for the turbojet engine program was also initially lacking as many high-ranking officials thought the war could easily be won with conventional aircraft.
Test flights began on 18 April 1941, with the Me 262 V1 example, bearing its “Stammkennzeichen” (radio code letters) of PC+UA, but since its intended BMW 003 turbojets were not ready for fitting, a conventional Junkers Jumo 210 piston engine was mounted in the V1 prototype’s nose, driving a propeller, to test the Me 262 V1 airframe. After successful trials demonstrating good flying characteristics of the design two prototypes of the BMW P.3302 turbojet engines, forerunner of the BMW 003 turbojet engine, were installed. The Jumo 210 piston engine was retained for safety, which proved wise – so often reported in literature – as both turbojet engines failed during the first flight and the pilot had to land using the nose-mounted engine alone. Original test-flight protocols published some years ago show reasonable doubt on that report.
In total the Messerschmitt Me 262 V1 successfully completed 74 flights but only one under turbojet power. The prototypes V2 through V4 were purely turbojet driven, but with the more powerful Junkers Jumo 004 turbojet engines.
The V1 through V4 prototype airframes all possessed what would become an uncharacteristic feature for most later jet aircraft designs, a fully retracting conventional landing gear setup with a retracting tailwheel. Indeed, the very first prospective German “turbojet fighter” airframe design ever flown, the Heinkel He 280, powered by a Heinkel HeS 8A turbojet engine, used a retractable tricycle landing gear from its beginnings, and flying on turbojet power alone as early as the end of March 1941. From prototype Me 262 V6 onwards all aircraft featured a fully-retractable, hydraulically-operated tricycle undercarriage. Dubbed unofficially the “Schwalbe” (“Swallow”), the first production sub-type off the new warplane, the Messerschmitt Me 262A-1a single-seat interceptor fighter entered service with the “Erprobungskommando (EKdo) 262” at Lechfeld in July 1944 (Ref.: 7, 24).
POWER PLANT: One Walter R II-203b bi-fuel liquid rocket, rated between 150 to 750 kp
PERFORMANCE: 550 mph
COMMENT: In early 1941, based on the success by the DFS 194, production of a prototype series, known as the Messerschmitt Me 163, began. Secrecy was such that the RLM’S “GL/C” airframe number, 8–163, was actually that of the earlier, pre-July 1938 Messerschmitt Bf 163. It was thought that intelligence services would conclude any reference to the number “163” would be for that earlier design. Five prototypes (V1 to V5) were ordered designated Messerschmitt Me 163A “Komet” (“Comet”).
In May 1941 the Messerschmitt Me 163A V4 was shipped to Peenemünde to receive the Walter HWK RII-203 engine. By 2 October 1941, the Me 163A V4, bearing the radio call sign letters, or Stammkennzeichen, “KE+SW”, set a new world speed record of 624.2 mph. Piloted by Heini Dittmar, the fully tanked up aircraft was towed to an altitude of 13,120 ft behind a Messerschmitt Me 110C. After casting-off from the tow-plane, the rocket engine was fired. At about Mach 0.84 compressibility effects resulted in a sudden loss of stability, and the Me 163A V4 went into a dive. Dittmar promptly cut the rocket motor, the aircraft decelerating rapidly and full control being restored. The aircraft was landed on skids with no apparent damage to the aircraft during the attempt.
During further flight testing, the superior gliding capability of the Me 163A proved detrimental to safe landing. As the now un-powered aircraft completed its final descent, it could rise back into the air with the slightest updraft. Since the approach was unpowered, there was no opportunity to make another landing pass. For production models, a set of landing flaps allowed somewhat more controlled landings. This issue remained a problem throughout the program. Nevertheless, the overall performance was tremendous, and plans were made to put the Messerschmitt Me 163 squadrons all over Germany in 40-kilometre rings (25 mi) around any potential target. Development of an operational version was given the highest priority.
Five prototype Me 163A V-series aircraft were built, adding to the original DFS 194 (V1), followed by eight pre-production examples designated as “Me 163 A-0”.
Note: Some postwar aviation history publications stated that the Messerschmitt Me 163A V3 (CD+IL) was thought to have set the record. The 1,004 km/h record figure would not be officially approached until the postwar period by the new British and American turbojet-powered aircraft. It was not surpassed (except by the later Me 163B V18 in 1944, but seriously damaged by the attempt) until the American Douglas D-558-I “Skystreak” turbojet-powered research aircraft did so on 20 August 1947 with no damage (Ref.: 24).
ACCOMMODATION: One or two pilots + 23 troops or equivalent freight
POWER PLANT: None
PERFORMANCE: 186 mph
COMMENT: The Gotha Go 242 was designed in response to a ReichsLuftfahrt Ministerium (RLM) requirement for a heavy transport glider to replace the DFS 230 then in service. The requirement was for a glider capable of carrying 20 fully laden troops or the equivalent cargo.
The aircraft was a high-wing monoplane with a simple square-section fuselage ending in clamshell doors used to load cargo. The empennage was mounted on twin booms linked by a tail plane. The fuselage was formed of steel tubing covered with doped fabric. The flight characteristics of the design were better than those of the DFS 230. Cargo versions of the glider featured a hinged rear fuselage loading ramp that could accommodate a small vehicle such as a “Kübelwagen” (Jeep) or loads of similar size and weight.
Two prototypes flew in 1941 and the type quickly entered production. At the end of 1942 253 Gotha Go 242A-0 and A-1A have been delivered primarily used for freight transportation. For take-off a two wheel jettisonable landing gear and for landing three landing skids were provided. In total 1,259 Gotha Go 242A-0 and A-1 were produced.
In service, Go 242s were towed into the air by Heinkel He 111s or Junkers Ju 52s. Most saw service in the Mediterranean, North Africa, and Aegean. Occasionally, Junkers Ju 87D-2 were used as tow plane. These had strengthened rear fuselage and combined tailwheel and hook for towing the Gotha Go 242.
Furthermore, the glider was tested with rockets for overloaded take offs. A jettisonable rack of four 48 kg Rheinmetall RI 502 solid fuel rockets each developing at 153 kp thrust for six seconds was attached to the rear of the cargo compartment. These were ignited in sequence to provide a continuous 153 kp thrust for 24 seconds.
A second rocket assisted system called the “R” (Rauch) Gerät (“Smoke” Decice) was also used with the glider. This was a liquid-fuel Walter KG R I-203 (HWK 500A) “Starthilfe” (Take-off Assist) monopropellant, RATO podded rocket engine which was mounted beneath the wing on either side of the body and was jettisoned after takeoff, parachuting down to be recycled (Ref.: 24).
POWER PLANT: Three Heinkel-Hirth HeS 011 turbojet engines, rated at 1,200 kp each
PERFORMANCE: 627 mph
COMMENT: During the summer of 1944, the Messerschmitt Me P.1102/105 project was on the drawing board at the same time as the Me P.1101 projects were designed, e. g. Me P.1101/92, Me P.1101/99 and Me P.1101/101. Several of these projects were of variable-geometry wing designs, a configuration which was a novelty in aircraft designing at that time.
The Messerschmitt Me P.1102/105 was developed as a fast bomber and heavy fighter.The variable-sweep wings were mounted in the center of the fuselage and could be swept between 15 and 50 degrees. For take-off and landing the wings were to be set at 20 degrees and for high speed flight the wings were to be set at the maximum of 50 degrees. The tail unit was of a normal configuration, with the tail planes swept back at 60 degrees.
Three jet engines powered the Me P.1102/105, two were located beneath the fuselage nose and one was located in the tail with an air intake on the top of the rear fuselage to feed this turbojet. Either three BMW 003 or Heinkel-Hirth He S 011 jet engines were to be employed. A single pilot sat in a cockpit located in the forward fuselage and three fuel tanks of 1200 liter capacity each were located behind the cockpit. The lower fuselage held an internal bomb bay and the tricycle landing gear.
The collapse of Germany ended work on this design. All Messerschmitt documentation relating to this projects series was seized by the US and was used in the development of several post-war aircraft. The Messerschmitt Me P.1102/105 project’s unusual three-engine power plant arrangement, in particular, was employed on the Martin XB-51 high-speed attack-interceptor which first flew in mid-1949 (Ref.: 17).
POWER PLANT: One Walter R I-203 liquid-fuel rocket engine, rated at 500 kp
PERFORMANCE: 343 mph
COMMENT: The DFS 194 was a rocket-powered aircraft designed by Alexander Lippisch at the Deutsche Forschungsanstalt für Segelflug (DFS – “German Institute for Sailplane Flight”).
The DFS 194 was based on the Alexander Lippisch “Delta” series of tailless designs. As originally conceived, it would have been a tailless aircraft similar to his DFS 40, powered by a conventional piston engine driving a pusher propeller. The airframe was completed in this configuration in March 1938.
Lippisch’s designs had attracted the attention of the Reichsluftfahrtministerium (RLM, Reich Aviation Ministry) who believed that tailless aircraft were the best basis for a rocket-powered fighter. On January 1939, Lippisch and his team were transferred to the Messerschmitt Company to begin work on such an aircraft, under what was known as “Project X”. The DFS-194 was modified to accept a Walter R I-203 rocket engine designed by Hellmuth Walter, and by October 1939, the aircraft was undergoing engine tests at Peenemünde.
These were followed by glide tests in early 1940 leading to the first powered flight in August with Heini Dittmar at the controls. The flight went well, the DFS 194 reaching 340 mph, bettering the speed of the earlier, Walter rocket powered Heinkel He 176.
The aircraft proved to have excellent flying characteristics and proved safe to fly at nearly twice the anticipated speed. These results paved the way for the next stage of the project, which now received priority status from the RLM. The Messerschmitt Me 163A “Komet”, a considerably refined design along the same basic lines, flew the following year (Ref. 24).
ACCOMMODATION: Crew of two + 12 troops or 1,600 kg freight
POWER PLANT: None
PERFORMANCE: 200 mph
COMMENT: The Gotha Ka 430 was a medium assault and freight glider, first built in 1944. The glider was designed by A. Kalkert and Gotha design team as a potential successor of the Gotha Go 242 glider. Somewhat smaller than the earlier glider, the new design introduced a rear loading ramp, some armor protection for the crew and a manually-operated gun turret.
The Ka 430 had a conventional structure with a wing of laminated plywood construction and plywood and fabric cowering, and a welded steel-tube fuselage covered by fabric aft of the cockpit, the nose being a moulded plywood shell fitting over the metal frame work and bolted in place. The undercarriage was of fixed, levered-suspension tricycle type, and the cargo hold extended from the cockpit to just aft of the mainwheels and terminated in a loading ramp hinged at the point where the rear fuselage swept upwards to merge with the tail-carrying boom, a section of the decking aft of the ramp hinged upwards to enlarge the opening. Slatted airbrakes were provided in the wings to steepen the glide angle and provision was made in the extreme nose for the installation of a battery of braking rockets.
To evaluate the rear fuselage and integral loading ramp a Go 242A-2 was modified to serve as a Ka 430 prototype, and the successful trials led to the placing of an order for 30 pre-production Ka 430A-0 gliders which were to be built by the Mitteldeutsche Metallwerke (MMW) at Erfurt.
The first Ka 430 A-0 (without gun turret) were completed late in 1944, successful towing trials being performed with Heinkel He 111H and Junkers Ju 88A as tugs, but only 12 of the pre-production gliders had been completed when the war situation necessitated the abandoning of the construction program (Ref.: 7)
POWER PLANT: Two Junkers Jumo 004C turbojet engines, rated at 1.100 kp each
PERFORMANCE: 600 mph at 40,000 ft
COMMENT: The Horten/Gotha Go 229B-1 was a night- and all-weather fighter variant of the basic Horten/ Gotha- Go 229A-0. The design based on the projected Horten Ho 229B V-7. Again the fuselage was lengthened to accommodate two crew members in tandem and FuG 240 Berlin radar. The flight characteristics were unchanged compared with the Horten/Gotha Go 229A-0. The project never left the drawing board.
Scale 1:72 aircraft models of World War II
Mit der weiteren Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden um Ihnen die Nutzerfreundlichkeit dieser Webseite zu verbessern. Weitere Informationen zum Datenschutz finden Sie in unserer Datenschutzerklärung.