Douglas A-26C „Invader“ (Airfix)

TYPE: Light bomber, ground-attack aircraft

ACCOMMODATION: Crew of three

POWER PLANT: Two Pratt & Whitney R-2800-27 “Double Wasp” radial engines, rated at 2,000 hp each

PERFORMANCE: 355 mph

COMMENT: The Douglas A-26 “Invader” was Douglas Aircraft’s successor to the A-20 “Havoc”, in British service known as Douglas “Boston”, and was one of the most successful and widely operated types flown by Allied air forces in World War II. It was a twin-engine light bomber and ground attack aircraft, was fast and capable of carrying twice its specified bomb load.
A re-designation of the type from A-26 to B-26 led to confusion with the Martin B-26 “Marauder”, which first flew in November 1940, about 16 months before the Douglas design’s maiden flight. Although both types were powered by the widely used Pratt & Whitney R-2800 “Double Wasp” eighteen-cylinder, double-row radial engine, they were completely different and separate designs. Roughly 5,300 Martin “Marauders”, originated in 1939, were produced twice as many in comparison to the Douglas design.
The Douglas XA-26 prototype first flew on July 1942. Flight tests revealed excellent performance and handling, but problems with engine cooling led to cowling changes and elimination of the propeller spinners on production aircraft. Repeated collapses during testing led to strengthening of the nose landing gear. The Douglas A-26 was originally built in two different configurations. The Douglas A-26B had a gun nose housed six to eight .50 caliber machine guns, officially termed the “all-purpose nose”, later commonly known as the “six-gun nose” or “eight-gun nose”. The Douglas A-26C’s “glass” nose, officially termed the “Bombardier nose”, contained a Norden bombsight for medium altitude precision bombing. The A-26C nose section included two fixed M-2 guns, later replaced by underwing gun packs or internal guns in the wings.
After about 1,570 production aircraft, three guns were installed in each wing, coinciding with the introduction of the “eight-gun nose” for A-26Bs, giving some configurations as many as 14 .50 in machine guns in a fixed forward mount. The A-26C nose section could be exchanged for an A-26B nose section, or vice versa, in a few man-hours, thus physically changing the designation and operational role. The “flat-topped” canopy was changed in late 1944 after about 820 production aircraft, to a clamshell style with greatly improved visibility. Alongside the pilot in an A-26B, a crew member typically served as navigator and gun loader for the pilot-operated nose guns. In an A-26C, that crew member served as navigator and bombardier, and relocated to the nose section for the bombing phase of an operation In most missions, a third crew member in the rear gunner’s compartment operated the remotely controlled dorsal and ventral gun turrets, with access to and from the cockpit possible via the bomb bay only when that was empty (Ref.: 24).

Messerschmitt Me 329 (Airmodel, Resin)

TYPE: Heavy fighter, fighter-bomber. Project.

ACCOMMODATION: Crew of two

POWER PLANT: Two Daimler-Benz DB 603 B liquid-cooled engine

PERFORMANCE: 426 mph

COMMENT: In February 1942 severe problems became obvious with the new twin-engine Messerschmitt Me 210, successor of the aging Messerschmitt Me 110. Due to longitudinal instability and lack of performance the series production was stopped and switched back to the inadequately Me 110. So Messerschmitt was forced to redesign the aircraft by lengthening the fuselage and adding more powerful engines what finally became the Messerschmitt Me 410. In the meantime a search was begun on a new design for a twin-engine heavy fighter.
Since beginning of 1939 Prof. A. Lippisch and his design staff was part of the Messerschmitt Company and was well known for many advanced and unorthodox projects. Among these was a design study, the Lippisch LiP.10, a fast, tailless, twin-engine bomber that incorporated many parts of the unsatisfactory Me 210. Independent to this Dr. Wurster from Messerschmitt’s design team was working on a similar project that officially was designated Messerschmitt Me 329. This aircraft was of tailless design and was to be constructed mainly from wood. This would save on strategic materials and keep the weight lower. The large area wing was swept back at approximately 26 degrees, and two Daimler-Benz DB 603 engines were buried in the wings, each driving a 3.4 m four-bladed pusher propeller. A large fin and rudder was mounted at the rear and a tricycle landing gear was provided. Other advanced touches included the pilot and navigator sitting tandem in a broad bubble canopy and a remote-controlled rear gun in the tail aimed via a periscope system from the cockpit. Performance comparison between the Lippisch Li P.10, the Me 329 and the Me 410 showed that the improvement of the Me 329 over the Me 410 was marginal. So development received a low priority, and while a full-scale glider  mock-up was tested in the winter of 1944/5, work on the project was cancelled shortly after (Ref.:  16, 17).

Mitsubishi Ki-109b (2nd Chutai, 107th Sentai)(LS-Models)

TYPE: Heavy interceptor

ACCOMMODATION: Crew of four

POWER PLANT: Two Mitsubishi Ha-104 radial engines, rated at 1,900 hp each

PERFORMANCE: 324 mph at 19,980 ft

COMMENT: In early 1943 the Mitsubishi Ki-67 heavy bomber then undergoing flight trials had proved that despite its size and weight it was fast and manoeuvrable. Consequently it was suggested that the Ki-67 be used as a basis for a hunter-killer aircraft. The project received the designation Ki-109 and two versions were built. The Ki-109a, nick-named “Killer”, was to mount in the rear fuselage two oblique-firing 37 mm Ho-203 cannon while the Ki-109b, the “Hunter”, was to be equipped with radar and a 40 cm search light. However, soon thereafter, the project was redirected and a standard 75 mm Type 88 anti-aircraft cannon was to be mounted in the nose. It was hoped that with this large cannon the aircraft could be able to fire on the Boeing B-29s while staying well out of range of their defensive armament. As the authorities anticipated that, initially at least, the B-29s would have to operate without fighter escort, the project was found sound and feasible and Mitsubishi were instructed in early 1944 to begin designing the aircraft which retained the Ki-109 designation.
Ground and inflight test firing of the heavy gun were sufficiently successful and an initial order of 44 aircraft was placed. Fifteen shells were carried for the 75 mm Type 88 cannon which were hand-loaded by the co-pilot, and the sole defensive armament consisted of a flexible 12.7 mm machine-gun in the tail turret. The rest of the airframe and the power plant were identical to those of the Ki-67. Despite the lack of high-altitude performance the Ki-109 was pressed into service, but, by the time enough aircrafts were on hand, the B-29s had switched to low-altitude night operations. A total of 22 Ki-109s were built by Mitsubishi Jukogyo K.K. (Ref.: 1).

Republic XF-15 “Reporter” (Airfix, Parts from Airmodel, Vacu-formed)

TYPE: Photo-reconnaissance aircraft

ACCOMMODATION: Crew of two

POWER PLANT: Two Pratt & Whitney R-2800-65 “Double Wasp” radial engines, rated at 2,000 hp each

PERFORMANCE: 376 mph at 17,000 ft

COMMENT: In autumn 1944, two Northrop P-61B “Black Widow” night fighters were extensively modified in an attempt to improve the performance and to extend the long-range in order to use these aircraft as long-range escort fighters.  Designated XP-61E the fuselage decking was cut flush with the wing to allow a large blown canopy to be fitted. The center and aft section of the fuselage nacelle housed additional fuel tanks and the nose radar was supplanted by four machine guns. The XP-61E’s were tested in the early month of 1945 but the second was lost in an accident on April 1945 and in view of the changing course of the war, further development of the “Black Widow” in this role as long-range escort fighter was abandoned. The first and remaining prototype was converted to the XF-15 “Reporter”, a long-range photo-reconnaissance aircraft, tested after the war. Due to the on-coming new turbojet powered aircraft a production order never was placed (Ref.: 9).

Messerschmitt Me P.1111 (Frank-Airmodel/Planet, Resin)

TYPE: Fighter, interceptor. Project

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel-Hirth HeS 011 turbojet engine, rated at 1,300 kp

PERFORMANCE: 618 mph

COMMENT: In winter 1944/1945, the Messerschmitt Project Bureau was intensively working on several advanced turbojet powered interceptor aircraft superior to the now in service acting Messerschmitt Me 262 “Schwalbe” (Swallow). Besides projects such as Me P.1110/I, Me P.1110/II, Me P. 1110 “Ente”, and Me P. 1112 was the Me P.1111 jet fighter/interceptor. The innovative design was as an improvement to the Messerschmitt Me P.1110 “Ente” (“Duck”). It was a tailless aircraft with the wings swept back at 45 degrees, being of near-delta shape. There was a single sweptback vertical fin and rudder. The cockpit was pressurized, fitted with an ejection seat and had a fairing extending to the base of the fin. The planned power plant was a Heinkel-Hirth HeS 011 turbojet engine, armament consisted of four MK 108 30mm cannon with 100 rounds each, two in the wing roots and two in the nose. The collapse of the “Third Reich” a few months later stopped all further work but data were transferred to the United Kingdom and influenced the post -war development of the  de Havilland DH 108 “Swallow” (Ref.:  17).

Mitsubishi G7M1 “Taizan” (Great Mountain), (Unicraft, Resin)

TYPE: Long-range bomber. Project

ACCOMMODATION: Crew of five

POWER PLANT: Two Mitsubishi Ha 42 twin-engines, rated at 2,400 hp each

PERFORMANCE: 346 mph

COMMENT: The Mitsubishi G7M was basically a derivative of the most famous Mitsubishi G4M Navy attack bomber. It was originally designed as a long range, strategic bomber able to carry a greater payload over a longer distance. To meet these requirements a four-engine design was favored.
When detailed information about the German Heinkel He 177 became available – a four-engine heavy bomber with dive-bombing capability, powered by two H-engines twinned together in one nacelle on each side thus reducing drag – the G7M design was changed in that manner. Germany promised to deliver the needed machinery to produce the H-engines under license. Other features of the Heinkel design were incorporated, too, such as the glazed nose, four-blade propellers, and a similar tail plane. In contrast the Mitsubishi design used a tricycle landing gear system. The ongoing war situation made it impossible to import the German H-engines as well as the tools for production and the design was changed again to a four-engine bomber but the end of the hostilities stopped all further work (Ref.: 24).

Messerschmitt Zerstörer-Projekt, Ausführung I, (Destroyer-project, Scheme I) (Planet, Resin)

TYPE: Heavy fighter, fighter bomber. Project

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004 turbojet engines, rated at 900 kp each or one Heinkel-Hirth HeS 011 turbojet engine, rated at 1,300 kp

PERFORMANCE: No data available

COMMENT: This project became known through a sketch which was published in France after WW II. Probably it dates back to 1942 and suggests a possibility of the”… installation of a radial turbojet engine”. A later well-known drawing suggests that there were two configurations of the same design, the “Zerstörer-Projekt I and II”. In both the air intakes as well as the tail assembly was different. Apparently, it was planned to utilize two Junkers Jumo 004 turbojets or one Heinkel HeS 011 engine.  In “Zerstörer-Projekt II” the air intake for the turbojet engines were positioned in the wing roots and the tail plane was swept sharp forward and in “Zerstörer-Projekt II” it was swept back so as the wings. Also the turbojet engine was fed by an air intake located on each side of the fuselage under the wings. To extend range, plans were made to mount two 300 liter auxiliary wingtip fuel tanks. Two Mk 108 30mm cannon were installed in the nose part. The design was not pursued (Ref.: 16, 17).

Kogiken Plan V Revised Light Bomber (Unicraft, Resin)

TYPE: Light bomber, fighter-bomber. Project

ACCOMMODATION: Crew of two

POWER PLANT: Two radial engines, rated at 1,450 hp each

PERFORMANCE: No data available

COMMENT: This design of a light bomber dates back to autumn 1941. A blueprint became available after the end of WW II showing a detailed three-view of the project and some important physical dimensions. It might be possible that this design may have had influence on the development of the Kawasaki Ki-102 (Allied code ‘Randy’). Furthermore, the design shows some similarity to the Grumman XP-50, forerunner of the Grumman F7F “Tigercat” (Ref.: 24).

Focke-Wulf Ta 152C-0 (Academy)

TYPE: Medium-altitude fighter and fighter-bomber

ACCOMMODATION: Pilot only

POWER PLANT: One Daimler-Benz DB 603LA liquid-cooled engine, rated at 2,300 hp (with MW 50)

PERFORMANCE: 460 mph at 32,810 ft

COMMENT: By autumn 1942, it was obvious that despite earlier opinions, the USAAF had every intension of building up an immense bomber force in Britain for use against Germany, mainly Boeing B-17 “Flying Fortress” and Consolidated B-24 “Liberator”. Furthermore, intelligence reports revealed that tremendous impetus was being placed behind the mass production of a larger, pressurized successor, the Boeing B-29 “Superfortress”, capable of operations at still greater speeds and altitudes. Thus, the development of fighters possessing higher combat ceilings had assumed greater urgency. Both Focke-Wulf and Messerschmitt were, therefore, asked to submit their proposals for a “Hochhleistungsjäger” (High-performance fighter), offering a substantially improved combat ceiling and amenable to adaption for a medium-to-high altitude reconnaissance-fighter role. To meet the requirements Focke-Wulf proposed the Fw 190Ra-2 and Ra-3, a variant based on the Fw 190D, and Messerschmitt offered a long-span derivative of the Me 109, the Me 155B. These submissions were accepted by the “Technische Amt” (Technical Office of the RLM) but in August 1943 it became clear that Messerschmitt was too committed with other development programmes to devote sufficient attention to the Me 155B, this being duly passed to Blohm & Voss.
Prof. Tank, director of Focke-Wulf’s design team, worked on his proposals Fw 190Ra-2 and Ra-3 that soon would receive the RLM type designations Ta 152H and Ta 152K, respectively. Tank envisaged the short-span variant as primarily a “Begleitjäger” (Escort fighter), and the long-span version as a “Höhenjäger” (High-altitude fighter). Furthermore, Tank pressed for permission to install the turbo-charged Daimler-Benz DB 603 engine in the Ta 152 fighter owing to its indisputable superiority to the Junkers Jumo 213E engine, installed in the Focke-Wulf Fw 190D, at high altitudes. The short-span Fw Ta 152C, as it was designated now, was broadly of similar aerodynamic concept to that of the Fw 190D, but was structurally an entirely new airframe. Although test flights showed excellent handling characteristics and performance and although a production order was placed in autumn 1944 the General-Luftzeugmeister Amt (Department of the Chief of Aircraft Procurement and Supply) decided on November 1944 that the highest priority had been given to four key warplanes, the Heinkel He 162, the Messerschmitt Me 262, the Arado Ar 234, and the Dornier Do 335. So all work on the Ta 152 was stopped (Ref.: 7).

Curtiss XF-14C-2 (Unicraft, Resin)

TYPE: Carrier-borne heavy fighter

ACCOMMODATION: Pilot only

POWER PLANT: One Wright XR-3350-16 ‘Cyclone’ radial engine, rated at 2,300 hp

PERFORMANCE: 398 mph at 32,000 ft

COMMENT: In early 1941, the Curtiss Aircraft Company proposed the development of a high-performance, heavily-armed fighter designed around a liquid-cooled engine. At that time the US Navy was dedicated to using air-cooled engines, but Curtiss experience with the Curtiss P-40 gave the company good grounds for its faith in the liquid-cooled unit, and on June 1941 it received a Navy contract for two prototypes of such an aircraft, to be designated XF14C-1. The chosen power plant was the still experimental Lycoming XH-2470-4 which was expected to deliver 2,200 hp at sea level, with a normal rating of 2,000 hp at 4,500 ft.  With an armament four 20-mm cannon in the wings, the XF14C-1 was expected to have a maximum speed of 374 mph at 17,000 ft and a service ceiling of 30,500 ft. However, wind tunnel testing by Navy engineers during 1942 cast some doubts on the validity of these figures  and with development of the XH-2470 engine lagging, the Navy eventually concluded that the performance of the XF14C-1 would be inadequate by the time it was ready to enter service, and the programme was cancelled in December 1943.
As the first airframe was then virtually complete, the Navy suggested it be flown with the air-cooled Wright R-3350 ‘Cyclone’ engine, driving six-blade contra props. In this guise, the Curtiss fighter was redesignated XF14C-2, and the first flight was made in July 1944. Performance again fell below expectation, a speed of 398 mph being reached at 32,000 ft compared with the estimated of 424 mph, and the R-3350 was still suffering from a number of teething problems. Meantime the progress of the Pacific war made further development of the XF14C-2 unnecessary, the programme being cancelled in the early month of 1945 (Ref.: 10).