Category Archives: Luftwaffe

Deutschland / Germany

Horten/Gotha Go 229A-1 ( Ho IX V2) (Revell)

TYPE: Interceptor, Fighter

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004B Turbojet engine, rated at 900 kp thrust each

PERFORMANCE: 607 mph at 39,000 ft

COMMENT: The Horten Ho IX V2, RLM designation Ho 229 – often called Gotha Go 229 because of the identity of the chosen manufacturer of the aircraft – was a German prototype fighter/bomber designed by the Horten brothers and built by Gothaer Waggonfabrik late in WW II. It was the first pure flying wing powered by turbojet engines. The design based on the Ho IX V1, an unpowered glider built from the onset as a prototype for a turbojet powered fighter and as a trainer for the aircraft when in production. The Horten Ho IX V2, as the first turbojet powered aircraft was designated was of mixed construction, with the center pod made from welded steel tubing and wing spars built from wood. The wings were made from two thin, carbon-impregnated plywood panels glued together with a charcoal and sawdust mixture. The wing had a single main spar, penetrated by the turbojet engine inlets, and a secondary spar used for attaching the elevens. The aircraft utilized retractable tricycle landing gear, with the nose gear on the first two prototypes sourced from a Heinkel He 177‘s tailwheel system, with the third prototype using an He 177A main gear wheel rim and tire on its custom-designed nose gear strut work and wheel fork. A drogue slowed the aircraft upon landing. The pilot in a special pressure suit sat on a primitive ejection seat. The aircraft was originally designed for the BMW 003 jet engine, but that engine was not quite ready, and the Junkers Jumo 004 engine was substituted. The aircraft was found at Friedrichroda by US Forces and later shipped to the US (Ref.: 23).

Lippisch Li P.13b (Anigrand, Resin)

TYPE: Interceptor, fighter. Project.

ACCOMMODATION: Pilot only

POWER PLANT: One Kronach-Lorin coal burning ramjet, power output unknown

PERFORMANCE: 650 mph (estimated)

COMMENT: The Lippisch Li P.13b was a follow-on design from the Lippisch Li P.13a, and was also a ramjet fighter. Designed in December 1944, it featured Lippisch’s favorite wing plan, a delta design (sweepback was 60 degrees) with downturned wingtips. A double fin and rudder was chosen to provide steady flight, and the cockpit was moved forward for better pilot’s visibility, ahead of the delta wing’s apex. On each side of the cockpit on the wing’s leading edge were the air intakes which fed the ramjet. For take-off a liquid-fuel rocket driven trolley was used; additional rockets were necessary to accelerate the aircraft to speed for operating of ramjets. The main landing gear was a retractable landing skid, and the rear rested on the reinforced downturned wingtips. No armament was planned at this stage. Because of the fuel shortage in Germany at this stage in the war, an ingenious plan to use coal (or paraffin coated lignite dust) for fuel was to be tried. A centrally installed round or hexagonal heat-resistant ceramic combustion chamber was fitted in the interior of the wing, and was fillable from above. No tests were ever carried out with this design or with the unique power source and the project only stayed in stage of concept sketches on the drawing board (Ref.: 16).

Lippisch Li P.11 (Planet, Resin)

TYPE: Heavy fighter, fighter bomber. Project

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004B turbojet engines, rated at 1.100 kp each

PERFORMANCE: 646 mph

COMMENT: In the late summer of 1942, Lippisch’s team was working on the twin-jet bomber project under designation Lippisch Li P.11. When the RLM gave priority to the Horten Ho IX (Ho 229, Gotha Go 229), all work was stopped on the Li P.11. One year later, the RLM reissued an official contract with Prof. Lippisch to develop a “Very Fast Bomber” that was based on Lippisch’s earlier research. The project was renamed “Delta VI” upon completion of design work on an unpowered glider, which was to serve as the initial prototype. The RLM bestowed the highest priority on producing a fighter version and ordered to construct models, mock-ups, wind tunnel research, and made ready for production. By February 1944, design work for the proposed fighter, fighter-bomber and heavy fighter was nearly complete. The wing was swept back at 37 degrees, and the low wing loading promised a good climb capability and excellent maneuverability. Dr. Lippisch hoped to commence flight tests with the unpowered glider by April 1944, with the two Jumo 004B turbojet powered version to be flying by July 1944. The center section of the unpowered glider Delta VI was captured by American troops at Salzburg, this being the only part of the aircraft to be completed (Ref. 16, 23).

Lippisch DM-1(Huma)

TYPE: Test glider for Lippisch P. 13a supersonic ramjet project

ACCOMMODATION: Pilot only

POWER PLANT: None

PERFORMANCE: Unknown

COMMENT: During work on the Lippisch P.13a supersonic ramjet project the Lippisch team proposed to build a test glider in order to study the flight characteristics of this revolutionary design. So a test glider was built by students from technical universities of Darmstadt and Munich, designated DM-1 (Darmstadt-München 1). At the end of the war the prototype of this test glider had not been finished when it was captured by US forces at the Prien airfield in Bavaria. Prof. Theodore von Karmann, a high capacity in aerodynamics in supersonic airflow, (native Hungarian, worked in Germany, later in the US) proposed to complete the test glider by Lippisch’s team. The aircraft was then shipped to the USA where it was test flown. According to NACA the results were positive and lessons learned were incorporated into NASA’s research as well as service aircraft of the 1950s. Mainly the Convair Company recognized the advantage on the Lippisch P.13a design and built the delta-aircraft XF2Y-1, XF-92, F-102, F-106, and B-58 (Ref. 19, 23)

Lippisch P.13a (RS-Model; Resin) with Dornier Do 217K-1 (Italeri)

TYPE: High-speed experimental fighter project

ACCOMMODATION: Pilot only

POWER PLANT: One Kronach-Lorin coal burning ramjet, power output unknown

PERFORMANCE: 1.025 mph (estimated)

COMMENT: The Lippisch P.13a was an experimental ramjet-powered delta wing interceptor aircraft designed in late 1944. The aircraft never made it past the drawing board, but testing of wind-tunnel models in the DVL (Deutsche Versuchsanstalt für Luftfahrt) thigh-speed wind tunnel showed that the design had extraordinary stability into the Mach 2.6 range. As conventional fuels were in extremely short supply by late 1944, Lippisch proposed that the P.13a be powered by coal. Initially, it was proposed that a wire-mesh basket holding coal be mounted behind a nose air intake, protruding slightly into the airflow and ignited by a gas burner. Following wind-tunnel testing of the ramjet and the coal basket, modifications were incorporated to provide more efficient combustion. The coal was to take the form of small granules instead of irregular lumps, to produce a controlled and even burn, and the basket was altered to a mesh drum revolving on a vertical axis at 60 rpm. A jet of flame from tanks of bottled gas would fire into the basket once the P.13a had reached operating speed (above 200 mph). The aircraft started on a trolley by using solid-fuel rockets or by towplane. For tests it could be launched by a carrier aircraft. In order to test this unorthodox design a test glider DM-1 was built by students from technical faculty of Darmstadt and Munich (DM 1 = Darmstadt-München 1). Furthermore, Film footage exists which shows a gliding test of a scaled-down model of the Lippisch P.13a. These tests began in May 1944 at Spitzerberg, near Vienna, before Nazi Germany collapsed (Ref.: 23).

Horten Ho IX V-1 (A + V Models, Resin)

TYPE: Test glider for the turbojet powered Gotha Go 229

ACCOMMODATION: Pilot only

POWER PLANT: None

PERFORMANCE: Not available

COMMENT: During summer 1943 the RLM interest in a pure flying wing had waned. Despite this loss of official interest, the Horten brothers continued to work on their jet fighter project which they had designated Horten Ho IX, and although entirely unauthorized by the RLM, construction work on a prototype had already started at Göttingen. To explore the aerodynamic characteristics of the revolutionary fighter thoroughly before attempting powered flight trials, the first prototype, the Ho IX V-1, was intended from the outset for testing as a glider before the installation of the planned BMW 003 turbojets, and was provided with a fixed tricycle undercarriage, the legs of the aft members being enclosed by swept aerofoil-section fairings. It was not until early 1944 that the RLM became aware of the existence of the Horten prototype and issued instructions that powered trial should be initiated. During spring 1944 the Ho IX V-1 had performed its first successful gliding trials and showed highly favourable results. But further trials terminated abruptly when the prototype crashed during a landing attempt. Meanwhile work began on the construction of a second prototype, Horten Ho IX V-2. The center section, accommodating the cockpit, power plants and undercarriage wells, was of conventional welded steel-tube construction with plywood skinning. Powered by two Junkers Jumo 004B turbojet engines, the Horten Ho IX V-2 made its test flight in January 1945.

Arado E. 581-4 (Anigrand, Resin)

TYPE: Interceptor fighter, experimental aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel/Hirth HeS 011 turbojet engine, rated at 1.300 kp

PERFORMANCE: 530 mph

COMMENT: End of 1943, the Arado Aircraft Company began work on a series of delta shaped, turbojet powered bombers, to fulfill the request of a “Long Range/High Speed Flying Wing Aircraft”.  In fact, most of the (in total 14) projects, designated Ar E.555-1 to -14, had a flying wing configuration because it  was thought to be the best design to fulfill a requirement of high speed, heavy loading and long-range aviation. Power was delivered by four to six turbojet engines. Due to the design acceptance by the RLM in early 1944, the Arado design team scaled down the projected, six turbojet engines equipped Arado E.555-1 bomber in same layout to design a smaller size fighter version, the Ar E.581-4. It was a single-seat fighter with a deep fuselage, and was powered by the single HeS 011 turbojet engine fed by a divided air intake under the cockpit. The wing was of a delta shape with the twin fins and rudders on the trailing edge, and the landing gear was of tricycle arrangement. Although work on the project was in progress Arado was ordered to cease all work on the  Ar E.581 for concentrating all facility resources on the existing fighter production (Jäger-Notprogramm, Fighter emergency program)  (Ref.: 16).

Horten Ho VII V-2 (Ho 226) (Frank-Airmodel, Resin)

TYPE: Trainer

ACCOMMODATION: Crew of two

POWER PLANT: Two Argus As 10 C air-cooled engines, rated at 250 hp each

PERFORMANCE: 212 mph

COMMENT: To support the development of flying wing aircraft the Luftwaffe founded a special “Luftwaffen-Sonderkommando 9” (Air Force Special Command 9). This command ordered several two-seater flying wing trainers for pilots who should fly the on-coming Horten/Gotha Go 229 twin-engine flying wing turbojet fighter. In 1943, based on the Horten V the Horten Brothers developed the Horten Ho VII, a flying wing with an enlarged center section to hold a longer canopy for a crew of 2, and greater fuel tanks. The wing sections remained nearly unchanged. Two aircraft were built by Peschke Company at Minden and flight tested at Minderheide airfield, the Ho VII V-1 with fixed undercarriage, the Ho VII V-2 with retracting undercarriage, the front wheel backwards and the main wheels forwards into the fuselage. Further tests were performed by Skoda-Kauba-Flugzeugwerke at Ruzyn airfield close to Prague (occupied by Germany at that time). In 1945 an order calling for 20 Ho VII trainers was placed as trainer for the Horten/Gotha Go 229 flying wing turbojet fighter. With the end of WW II all work was cancelled (Ref.: 19).

Horten Ho V V-2 (Fruitbat)

TYPE: Experimental flying wing

ACCOMMODATION: Pilot only

POWER PLANT: Two Hirth HM 60R inline engines, rated at 80 hp each, driving pusher propellers

PERFORMANCE: 218 mph

COMMENT: Walter and Reimar Horten, credited as the Horten Brothers, were German aircraft pilots and enthusiasts. Although they had little, if any, formal training in aeronautics or related fields, the Horten Brothers designed not only some outstanding gliders but some of the most advanced aircraft of the mid 1940s, including the world’s first jet-powered flying wing, the Horten Ho 229. Early in 1930, both began their career by designing some outstanding gliders, most of them in flying wing configuration. The first Horten Ho I glider was awarded for its excellent construction and was followed by the Horten Ho II that, after flight testing as glider, was powered  by one Hirth HM 60 R engine with pusher-type propeller. Further development was the Horten Ho III, a high performance glider, of which 14 aircraft were built, and the Horten Ho IV, also a high performance glider. In 1936, supported by the Dynamit Noble Company, construction of the Horten Ho V began, a twin engine flying wing with two seats and built completely from “Trolitax”, a new synthetic material. Most advanced was its control system by combining lateral and yaw control. Undamped vibrations occurred during flight and the aircraft crashed, the pilot survived. The second prototype, the Horten Ho V V-2, a single seater, was constructed in a conventional way, as far as the material and the control systems are concerned. During flight tests the aircraft showed excellent handling characteristics but remained grounded as WW II proceeded (Ref.:  19)

Focke-Wulf Fw “Triebflügeljäger” (“Thrust-wing Fighter”) (Huma)

TYPE: Target defense interceptor. Project.

ACCOMMODATION: Pilot only, in seated position

POWER PLANT: Three Pabst/Lorin ramjets at wingtips, rated at 840 kp thrust each. For starting ramjets Walther 109-500 solid-fuel rockets were fitted to each ramjet, rated at 500 kp for 30 seconds each

PERFORMANCE: 621 mph (estimated)

COMMENT:  This Focke-Wulf Vertical Take-Off and Landing (VTOL) fighter/interceptor project was designed in September 1944, at the same time when the Heinkel Company worked on its VTOL-projects “Lerche” and “Wespe”. But in contrast to the latter two designs the propulsion system of the Focke-Wulf project was radical different. Three untapered wings rotated around the fuselage and had a gradually decreasing pitch towards the wingtips, thus acting like a giant propeller (“Triebflügel”). At the end of each wing was a Pabst ramjet. Since ramjets do not operate at slow speeds, the wing-rotor had to be driven by small Walter rocket engines, fitted to each ramjet pod. When the plane was sitting on its tail in the vertical position, the rotors would have functioned similarly to a helicopter. When flying horizontally, they would function more like a giant propeller. A cruciform empennage at the rear of the fuselage comprised four tail planes, fitted with moving ailerons that would also have functioned as combined rudders and elevators. A single large and sprung wheel in the extreme end of the fuselage provided the main undercarriage. Four small castoring wheels on extensible struts were placed at the end of each tail plane to steady the aircraft on the ground and allow it to be moved. The main and outrigger wheels were covered by streamlined clamshell doors when in flight. When taking off, the rotors would be angled to give lift as with a helicopter or, more accurately, a gyrodyne. Once the aircraft had attained sufficient altitude it could be angled into level flight. This required a slight nose-up pitch to provide some downward thrust as well as primarily forward thrust. Consequently, the four cannons in the forward fuselage would have been angled slightly downward in relation to the center line of the fuselage. The rotors provided the only significant lift in horizontal flight. To land, the aircraft had to slow its speed and pitch the fuselage until the craft was vertical. Power could then be reduced and it would descend until the landing gear rested on the ground. This would have been a tricky and probably dangerous maneuver given that the pilot would be seated facing upward and the ground would be behind his head at this stage. Unlike some other tail sitter aircraft, the pilot’s seat was fixed in the direction for forward flight. The spinning rotor would also obscure rear vision. Although the “Triebflügeljäger” project was not realized, a wind tunnel model was tested up to a speed of Mach 0.9 (Ref.: 17, 18, 23)