Category Archives: Luftwaffe

Deutschland / Germany

Göppingen Gö 9 (AML Models, Resin)

TYPE:  Scaled-down research aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Hirth HM 60 four cylinder inverted air-cooled in-line piston engine, rated at 80 hp, driving a four-bladed pusher propeller via an extension shaft

PERFORMANCE: 137 mph

COMMENT: The Göppingen Gö 9 was a research aircraft built to investigate the practicalities of powering a plane using a pusher propeller located far from the engine and turned by a long driveshaft. In 1937, Claudius Dornier observed that adding extra engines and propellers to an aircraft in an attempt to increase speed would also attract a penalty of greater drag, especially when placing two or more engines within nacelles mounted on the wings. He reasoned that this penalty could be minimized by mounting a second propeller at the rear of an aircraft. In order to prevent tail-heaviness, however, the engine would need to be mounted far ahead of it. Dornier patented this idea and commissioned a test plane to evaluate it. This aircraft was designed by Dr. Hütter as a 40% sized, scaled-down version of the Dornier Do 17 ‘Fast bomber’ fuselage and wing panels without the twin-engine nacelles, and built by Schempp-Hirth at Wüsterberg. The airframe was entirely of wood and used a retractable tricycle landing gear – one of the earliest German airframe designs to use such an arrangement. Power was supplied by a Hirth HM 60 inverted, air-cooled inline four-cylinder engine mounted within the fuselage near the wings. Other than the engine installation, the only other unusual feature of the aircraft was its all-new, full four-surface cruciform tail, which included a large ventral fin/rudder unit of equal area to the dorsal surface. This fin incorporated a small supplementary tail-wheel protruding from the ventral fin’s lower tip that assisted in keeping the rear-mounted, four-blade propeller away from the ground during take-off and landing. The Gö 9 carried the civil registration D-EBYW. Initially towed aloft by a Dornier Do 17, flight tests began in June 1941, but later flights operated under its own power. The design validated Dornier’s ideas, and he went ahead with his original plan to build a high-performance aircraft with propellers at the front and rear, producing the Dornier Do 335 ‘Pfeil’ (‘Arrow’) the fastest fighter aircraft in service during WW II. The eventual fate of the Gö 9 is not known (Ref.: 24)

Messerschmitt Me P.1104/II (A+V-Models, Resin)

TYPE: Short-range interceptor. Project

ACCOMMODATION: Pilot only

POWER PLANT: One Walter HWK 509A-2 liquid-fueled rocket, rated at 1,700 kp

PERFORMANCE: 503 mph

COMMENT:  In mid 1944 the RLM called for proposals of a small, cheap, easy to build, reusable short-range, high speed interceptor in the context of the ‘Miniaturjägerprogramm’ (Miniature fighter program).  Aircraft companies such as Bachem,  Focke-Wulf, Heinkel, Junkers and Messerschmitt submitted proposals: Bachem Ba 349 ‘Natter’ (‘Grass Snake’), Focke-Wulf Fw ‘Volksjäger’, (‘People Fighter’), Heinkel He P.1077 ‘Julia’, Junkers EF 126 ‘Lilli’, Junkers EF 127 ‘Walli’ and Messerschmitt the designs Me P.1103 and Me P.1104, each in several variants. The Messerschmitt Me P.1104/II design was a simple wooden construction with a cylindrical fuselage, the wings were shoulder-mounted and un-swept so as the tail-plane. Power was provided by a Walter HWK 509A-2 liquid-fuel rocket engine with a main combustion chamber of 1.700 kp thrust and a smaller cruising chamber of 300 kp thrust. The pilot was in a conventional seated position, the armament consisted of one single MK 108 30 mm cannon beneath the cockpit.  For take-off the fighter was positioned on a trolley so as the Messerschmitt Me 163 ‘Komet (‘Comet’) that was jettisoned when the aircraft was airborne. The tiny plane was towed by a Messerschmitt Me 109G or Messerschmitt Me 262A-1 towards the enemy, released when in attack position and ignited the rocket motor. After attack the aircraft glided back to its base and landed on retractable skids. As with projects of other companies all work was cancelled in favour of the Bachem Ba 349 ‘Natter’ (Ref.: 17, 20)

Messerschmitt Me 262C-3a ‘Heimatschützer IV’, (Home Protector IV’) (Revell, Parts scratch-built)

TYPE: Interception fighter

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004C turbojet engines, rated at 980 kp each and one Walter HWK 509S-2 liquid-fueled rocket engine, rated at 1,700 kp

PERFORMANCE: 510 mph at 32,800 ft

COMMENT: The major disadvantage displayed by the ‘Heimatschützer I’ had been the strict limitation imposed on J2 tankage (for the Jumo 004 turbojet engines) by the internally mounted rocket motor, and the need to use some of the available tankage for its propellants. The Messerschmitt Me 262C-3a ‘Heimatschützer IV’, therefore, had a Walter R II-211/§ rocket motor slung beneath the fuselage with ‘C-Stoff’  and ‘T-Stoff’ tanks  mounted on modified bomb carriers immediately ahead of the power plant. The rocket motor was jettisonable, and was to be dropped by parachute after the fuel had been consumed. Fuel was fed to the power plant by means of a flexible line, but difficulties were encountered with the fuel feed as a level of tanks was slightly below that of rocket combustion chamber, and these had not been resolved when further work on the Messerschmitt Me 262C-3a ‘Heimatschützer IV’ terminated.
Another ‘Heimatschützer’, the Messerschmitt Me 262C-3 ‘Heimatschützer III’ was a proposed version of the basic Me 262A-1a with Junkers Jumo 004 turbojet engines replaced with Walter HWK RII-211 liquid-fueled rocket engines (Ref.: 7).

Messerschmitt Me P. 1103/III (A+V Models, Resin)

TYPE: Short-range interceptor. Project

ACCOMMODATION: Pilot only

POWER PLANT: One Walter HKW 509A-1 liquid-fueled rocket, rated at 1,600 kp

PERFORMANCE: 435 mph

COMMENT: In 1944, according to the RLM’s ‘Miniaturjägerprogramm’ (Miniature fighter program) the Messerschmitt Me P.1103/III was designed as a small, cheap, easy to build, short-range, high speed interceptor fighter. Competitors were Focke-Wulf Fw ‘Volksjäger’, Junkers EF 126 ‘Lilli’, Junkers EF 127 ’Walli’ and Bachem Ba 349 ‘Natter’. Construction was to be simple, the airframe mainly built from wood. The wings were mid-mounted and un-swept so as the tail-plane. For take-off the fighter set on a simple pair of wheels and a front skid. Both were jettisoned when the aircraft was airborne. The tiny plane was towed by a Messerschmitt Me 109G or Messerschmitt Me 262A-1 towards the enemy, released when in right position and ignited the rocket motor. After attack the aircraft glided back to its base and landed on retractable skids. All design work was cancelled in favour of the Bachem Ba 349 ‘Natter’ (Ref.: 17).

Messerschmitt Me 262C-2b ‘Heimatschützer II’ (‘Home Protector II’), (Revell, Parts scratch-built)

TYPE: Interceptor fighter

ACCOMMODATION: Pilot only

POWER PLANT: Two BMW 003R units, each of which comprised a BMW 003A turbojet engine, rated 800 kp and a BMW 718 bi-fuel rocket motor rated at 1.230 kp

PERFORMANCE: 510 mph at 32,800 ft

COMMENT: The second rocket-boosted development, the Messerschmitt Me 262C-2b ‘Heimatschützer II’ (‘Home Protector II’), also converted from a Messerschmitt Me 262A-1a, made its sole test flight in March 1945. The Me 262C-2b was powered by two BMW 003R units each of which comprised a BMW 003A turbojet and a BMW 718 liquid-fuel rocket motor. The arrangement of the fuel tanks was similar to that of the Messerschmitt Me 262C-1a except that “S-Stoff’ occupied the forward main tank and ‘R-Stoff’ was housed by the aft auxiliary tank. The BMW 718 rocket motor was highly temperamental, and although some 50 bench runs were made with the complete BMW 003R unit, on several occasions the rocket component blew up and burned fiercely. Only one flight with the sole Messerschmitt Me 262C-2a ‘Heimatschützer II’ under full power was made. Further work concentrated on the Messerschmitt Me 262C-3b ‘Heimatschützer IV’. However, the aircraft shown here could be attached to the ISS 1 (Industrie Schutz Staffel 1 (Industry Protection Squadron) —- assumed of serial production (Ref.: 7).

Messerschmitt Me 262C-1a ‘Heimatschützer I’ (’Home Protector I’), (Matchbox, parts scratch-built)

TYPE: Interceptor fighter

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004C-1 turbojet engines, rated at 980 kp and one Walter HWK 509A-1 liquid-fueled rocket engine, rated at 1,600 kp

PERFORMANCE: 535 mph at 26,250 ft

COMMENT: Early in 1945, considerable importance was attached to the rapid development of rocket-boosted ‘Heimatschützer’ (‘Home Protector’) versions of the Messerschmitt Me 262 capable of climbing to intercept altitude with extreme rapidity. The first of these, the Messerschmitt Me 262C-1a ‘Heimatschützer I’ converted from a Me 262A-1a, was flown for the first time on February 27, 1945. The Me 262C-1a had a Walter bi-fuel rocket motor mounted in the extreme rear of the fuselage. Tanks for the ‘T-Stoff’ and ‘C-Stoff’ for the rocket engine and the fuel tanks for the turbojet engines were located in the fuselage. Although the rocket motor did reduce the take-off run of the Me 262C-1a, its primary function was to boost climb rate. Once started the rocket motor provided full power for three minutes which was sufficient to push the Me 262C-1a to an altitude of 26,250 ft. From a standing start an altitude of 38,400 ft could be reached in 4.5 min. Four flight tests were completed before development of this ‘Heimatschützer’ was discarded in favor of the Messerschmitt Me 262C-3 ‘Heimatschützer IV’. One Messerschmitt Me 262C-1a only was built, but the aircraft shown here could be attached to the JV 44 (Jagd Verband, Pursuit Unit) —- assumed of serial production (Ref.:  7).

Messerschmitt Me 262 with Heinkel-Hirth HeS 021 Turboprop (Revell, Parts from Unicraft, Resin)

TYPE: Long-range night- and all-weather fighter. Project

ACCOMMODATION: Crew of two, pilot and radar observer

POWER PLANT: Two Heinkel-Hirth HeS 021 turboprop engines, rated at 3,300 hp each

PERFORMANCE: No data available

COMMENT: From the onset Messerschmitt engineers worked on several modification of the basic Me 262 ‘Schwalbe’ and ‘Sturmvogel’ designs, e. g. with different equipment, engines, electronics and weapon systems. Some of them were realized, others remained in project status. The availability of new and powerful turboprop engines was of great interest for long-range aircraft, especially for night- and all-weather fighters. The main advantage of this new power unit was the relative little fuel consumption, compared with the turbojet engines at that time, and by that an extended time of flight. Pioneers on that field were BMW (BMW 028, 5,440 hp), Daimler Benz (DB ZTL, 2,000 hp), Heinkel,( HeS 021, 3,300 hp), and Junkers (Jumo 022, 6,000 hp). None of these engines were completed and tested, but some in a very advanced stage.
This Messerschmitt Me 262 design  dates back to early 1945. Based on an airframe of a two-seater Me 262B, two Heinkel-Hirth HeS 021 turboprops, each driving six-bladed propellers, should be installed. As with many other projects this design remained on the drawing board until the end of the hostilities. After the war similar designs were developed and flown in the UK, the Gloster ‘Trent Meteor”, and the US the Convair XP-81, and the Ryan F2R-1 ‘Dark Shadow’, respectively.

 

 

 

 

Junkers Ju 287 with Messerschmitt Me 262A-1a (‘Mistel’, Mistletoe), (Ju 287 Airmodel, Vacu-formed, Me 262 Matchbox, Start-trolley and other parts scratch-built)

TYPE: Anti-ship and –fortification destroyer. Project

ACCOMMODATION: Pilot only in Me 262

POWER PLANT: Two Heinkel-Hirth HeS 011 turbojet engines, rated at 1,500 kp each (Ju 287) and two Junkers Jumo 004 turbojet engines, rated at 950 kp each (Me 262)

PERFORMANCE: 500 mph (estimated)

COMMENT: In desperate attempts to stop the forward rushing Allied troops several proposals were offered using different pilotless aircraft as guided missile in pickapack combination with a piloted leading aircraft (‘Mistel’, ‘Mistletoe’). They should be used against ships, fortifications, and troop concentrations. The unmanned aircraft with a large hollow-charge warhead was guided to vicinity of its target by a single-seat fighter temporarily attached to a superstructure above the fuselage. When the objective was reached, the pilot of the upper component set the controls to approach the target in a shallow glide, and at the appropriate distance detached his aircraft and climbed away, the pilotless lower component continuing on its set course.
In March 1945 a proposal was submitted using a variant of the brand new Junkers Ju 287 as guided missile in combination with the Messerschmitt Me 262. This Ju 287 was somewhat smaller than the original aircraft, had the same wing and tail arrangement, and was to be powered by two or four turbojet engines of various types. For take-off a special trolley was developed by Rheinmetall-Borsig. There is no evidence whether this project ever was seriously discussed with the authorities (Ref.: 16).

Messerschmitt Me 262A-1a/U3, NAGr 6 (Matchbox, Parts from Frank-Airmodel, Vacu-formed)

TYPE: Reconnaissance fighter

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004B-2 turbojet engines, rated at 900 kp each

PERFORMANCE: 510 mph at 32,800 ft

COMMENT: Another development of the Messerschmitt Me 262A-1a series was the Messerschmitt Me 262A-1a/U3 reconnaissance fighter. Several aircraft featured a bay in the nose for two side-by-side obliquely-mounted cameras. These could be two Rb 50/30s or an Rb 20/30 and a Rb 75/30. A small observation window was introduced into the floor of the cockpit. Due to the size of the cameras two bulge at both sides of the nose were installed. Because of the high speed all cannon armament was discarded. These aircraft were deployed to tactical reconnaissance groups (NAG = Nahaufklärergruppe) (Ref.: 7).

Messerschmitt Me 262 V9 (VI + AD) (Revell + parts from Unicraft)

TYPE: High speed experimental aircraft

ACCOMMODATION: Pilot only

POWER PLANT: Two Junkers Jumo 004B-2 turbojet engines, rated at 900 kp each

PERFORMANCE: 624 mph

COMMENT: The Messerschmitt Me 262 V9 was the 9th prototype and had nearly the same airframe as the Me 262A. It was completed in January 1944, it’s primary task being high speed trials up to the fighter’s Mach limitation. During the course of these various aerodynamic improvements were introduced. The leading edge of the inner wing as well as of the vertical tail was increased to 45 degree, the leading edge of the horizontal tail was swept back to 40 degree, a shallow, low-drag cockpit canopy was installed, and the muzzles were faired over. The highest speed attained by this experimental aircraft being 624 mph which was clocked at Leipheim on July 1944 (Ref.:  7).