Galleries

Ryan FR-1 Fireball (Airmodel, Vacu)

TYPE: Carrier-borne fighter

ACCOMMODATION: Pilot only

POWER PLANT: One Wright R-1820-72W Cyclone 9 air-cooled radial engine, rated at 1,350 hp and General Electric J31-GE-3 turbojet, engine rated at 700 kg thrust

PERFORMANCE: 404 mph at 17,800 ft

COMMENT: The Ryan FR- Fireball was a mixed-power fighter aircraft designed by Ryan Aeronautical for the US Navy during WW II. It was the Navy’s first aircraft with a turbojet engine. Only 66 aircraft were built before Japan surrendered in August 1945. The FR-1 Fireball equipped a single squadron before the war’s end, but did not see combat. The aircraft ultimately proved to lack the structural strength required for operations aboard aircraft carriers and was withdrawn in mid-1947.
Design of the FR-1 began in 1943 for a mixed-powered fighter because early turbojet engines had sluggish acceleration that was considered unsafe and unsuitable for carrier operations. Ryan received a contract for three XFR-1 prototypes and one static test airframe on February 1943 with the first two prototypes delivered in 14 months. Another contract was placed for 100 aircraft on December 1943 and a later contract on January 1945 increased the total of FR-1s on order to 700.
The XFR-1 was a single-seat, low-wing monoplane with tricycle landing gear. A 1,350 hp Wright R-1820-72W Cyclone radial engine was mounted in the fighter’s nose while a 724 kp thrust delivering General Electric I-16 (later redesignated as the J-31) turbojet was mounted in the rear fuselage. It was fed by ducts in each wing root which meant that the wing had to be relatively thick to house the ducts and the outward-retracting main landing gear. To simplify the fuel system, both engines used the same grade of avgas. Two self-sealing fuel tanks were housed in the fuselage. The cockpit was positioned just forward of the leading edge of the wing and the pilot was provided with a bubble canopy which gave him excellent visibility. The XFR-1 had the first laminar flow airfoil in a navy carrier aircraft.
The Fireball was armed with four 12.7 mm M2 Browning machine guns. They were mounted in the center section of the wing, immediately outboard of the air intakes for the jet engine. Four 127 mm rockets could be carried under each outer wing panel and two hardpoints were provided under the center section for 454 kg bombs or drop tanks.  Armor plates were provided in front and behind the pilot’s seat and for the oil cooler
The first XFR-1 made its first flight on June 1944 without ist turbojet engine, but this was installed shortly afterward. The second prototype first flew on September 1944. Test flights confirmed wind tunnel tests that revealed a lack of longitudinal stability because the center of gravity had been miscalculated. In addition, the circular rear fuselage of the FR-1 gave less stability than the slab-style fuselage of the Grumman F4F Wildcat that was used as a model for the stability calculations. A new tail with enlarged vertical andhorizontal stabilizers was designed and retrofitted to the prototypes.
The first prototype was lost in a crash on October 1944. Investigation showed that the wing structure was not strong enough to resist compressibility effects. This was cured by doubling the number of rivets in the outer wing panels. The second prototype crashed on March 1945 when the pilot failed to recover from a dive from 35,000 feet, probably also due to compressibility effects. The third prototype crashed on  April when the canopy blew off during a high-speed pass.
Operational testing by the Naval Air Test Center (NATC) at Naval Air Station Patuxent River that included carrier acceptability tests revealed additional problems: The piston engine tended to overheat until electrically operated cowl flaps were installed, the catapult hooks had to be moved, and the nosewheel oleo shock strut had to be lengthened. Carrier suitability tests began aboard the escort carrier CVE 30 Charger in early January 1945. The aircraft successfully made five catapult take-offs using the piston engine as well as three take-offs using both engines. No problems were reported when landing aboard the carrier.
On December 1943, orders for 100 production FR-1s were placed, with a follow-up order of 1,000 additional fighters in January 1945. All of the contracts were contingent on the aircraft successfully completing carrier trials. Only 66 Ryan FR-1 Fireballs were completed by November 1945 as orders for 1,044 FR-1s were canceled on VJ Day.
One squadron, VF-66, received its first Fireballs in March 1945, but they never saw combat. On 1 May, three of the squadron’s aircraft were craned aboard the carrier CV-4 Ranger to attempt to qualify seven pilots, but two of the fighters were damaged while landing. One missed the arresting gear and hit the crash barrier while the other aircraft’s nose gear collapsed. The following month the pilots qualified and were on pre-embarcation leave when the Japanese surrendered. The squadron was decommissioned on 18 October 1945 with all pilots and aircraft transferred to VF-41. On 6 November 1945, a Fireball of VF-41 became the first aircraft to land under jet power on an aircraft carrier, albeit without prior planning. After the radial engine of an FR-1 failed on final approach to the escort carrier CVE-65 Wake Island, the pilot managed to start the jet engine and land, barely catching the last arrestor wire before hitting the ship’s crash barrier (Ref.: 24).

Messerschmitt Me 108B Taifun (Fly)

TYPE: Personal transport and liaison aircraft

ACCOMMODATION: Crew of one or two

POWER PLANT: One Argus As 10E air-cooled inline engine, rated at 266 hp

PERFORMANCE: 190 mph

COMMENT: The Messerschmitt Bf 108 Taifun (“Typhoon”) was a German single-engine sport and touring aircraft, developed by Bayrische Flugzeugwerke in the 1930s. The Bf 108 was of all-metal construction.Originally designated the M 37, the aircraft was designed as a four-seat sports/recreation aircraft for competition in the 4th Challenge International de Tourisme (1934). The M 37 prototype flew first in spring 1934, powered by a 247 hp Hirth HM 8U air-cooled engine, which drove a three-blade propeller.
Although it was outperformed by several other aircraft in the competition, the M 37’s overall performance marked it as a popular choice for record flights. Particular among these traits was its low fuel consumption rate, good handling, and superb takeoff and landing characteristics.
The Bf 108A first flew in 1934, followed by the Bf 108B in 1935. This revised version, built from late 1935. The prototype had a Siemens-Halske Sh 14A radial, but production machines used the the substantially larger, 12.67 litre displacement  237 hp Argus As 10C or the 266 hp Argus As 10E air-cooled inverted V8 engine.. A quadrant-shaped rather than rectangular rear window, tailwheel replacing skid, revision of shape of empennnage and removal of tailplane upper bracing was introduced.The Bf 108B used  The nickname Taifun (“typhoon”) was given to her own aircraft by Elly Beinhorn, a well-known German pilot, and was generally adopted.
Soon after the first production aircraft began to roll off the assembly line in Augsburg, several Bf 108s had set endurance records.
The Bf 108 was adopted into Luftwaffe service during World War II, where it was primarily used as a personal transport and liaison aicraft.
Production of the Bf 108 was transferred to occupied France during World War II and production continued after the war as the Nord 1000 Pingouin. In total 885 aircraft have been built (Ref.: 24).

Republic P-47D-25 Thunderbolt, 512 FS, 406 FG (Revell, Parts from Pavlamodel)

Republic P-47D-22-RE Thunderbolt, 509 FS, 405 FG (Revell, Parts from Pavlamodel)

Northrop XP-79B Flying Ram (RS Models)

TYPE: Interceptor fighter

ACCOMMODATION: Pilot only, in prone position

POWER PLANT: 2 x Westinghouse 19B (J30) jet engines, rated at 650 kp each

PERFORMANCE: 547 mph

COMMENTS: In 1942 John K. Northrop conceived the XP-79 as a high-speed rocket-powered flying-wing fighter aircraft. In January 1943, a contract for two prototypes with designation XP-79 was issued by the United States Army Air Forces. To test the radical design, glider prototypes were built, designated MX-324. Originally, it was planned to use a Aerojet XCALR-2000A-1 liquid-fueled rocket motor rated at 920 kp thrust supplied by monoethylanilin and red fuming nitric acid. Because of the corrosive and toxic nature of the liquids, the XP-79 was built using a welded magnesium alloy monocoque structure to protect the pilot if the aircraft was damaged in combat with a 3 mm skin thickness at the trailing edge and a 19 mm thickness at the leading edge. However, the rocket motor configuration using canted rockets to drive the turbopumps was unsatisfactory and the aircraft was subsequently fitted with two Westinghouse 19-B (J-30) turbojets instead. This led to changing the designation to XP-79B.  The nickname “Flying Ram” is attributed to the unusual fighting tactic. It was planned to fly with high speed direct towards the enemy and to hit it with wingtips or fuselage. Due to its extreme stability the fighter and its pilot should survive. The XP-79B was lost during its first flight on 12 September 1945. Shortly thereafter, the second and the overall project was cancelled (Ref.: 23).

Gloster ‘Meteor’ F. I Trent Turboprop (MPM)

TYPE: Experimental testbed

ACCOMMODATION: Pilot only

POWER PLANT: Two Rolls-Royce RB.50 Trent turboprop engines, rated at 750 hp and 570 kp thrust each

PERFORMANCE:

COMMENT: Experimental works with early jets proved that in the speed range of less than 450 mph the substantial reduction of fuel consumption can be obtained by fitting a reduction gearbox to the impeller of a turbojet engine driving an airscrew. In German companies such as BMW, Heinkel and Junkers were pioneers related to this new power unit and some of these were in an advanced stage of realization (Messerschmitt Me 262B-2 “Turboprop”), but the end of the war stopped all further works. Also in the UK this idea was materialized by Rolls- Royce in the form of a ‘Trent’ turboprop engine what was in fact a modified ‘Derwent’ turbojet, fitted with shaft reduction gearbox and five-bladed Rotol propellers. Two ‘Trent’ turboprops were installed in a Gloster ‘Meteor’ F. 1 turbojet fighter as a test bed. The aircraft needed little modification for the accommodation of the ‘Trent’ power plant, though the nacelles were somewhat larger, which, with the extra side area of the propellers, entailed the fitting of two small auxiliary fins towards the outboard end of the tail plane to ensure directional stability. The Gloster ‘Trent’-Meteor and became the first aircraft to take-off and fly solely on turboprop power on September, 1945. By March 1948 the development program had been completed. The results of it were embodied in highly successful Rolls-Royce ‘Clyde’ and ‘Dart’ turboprop engines (Ref.: 24).

Hafner H.8 Rotachute Mk.IV (Fly)

TYPE: Autogyro

ACCOMMODATION: Pilot only

POWER PLANT: none

PERFORMANCE: 108 mph at tow

COMMENT: The Hafner H.8 Rotachute was a British 1940s experimental one-man rotor kite designed by Raoul Hafner, an Austrian engineer who specialized in rotary wing design, and who had moved to the UK in 1933 to continue his research and development work. In 1940, he proposed the use of a single-place strap-on rotor kite in place of a conventional parachute, to deliver a soldier accurately to a battlefield. The proposal was made to the Air Ministry in the light of a shortage of silk for parachute manufacture. Hafner was briefly interned as an alien, but was released to pursue the feasibility of the idea at the Central Landing Establishment (CLE) located at RAF Ringway. In October 1940, work began on design and construction of rotor systems and scale models of rotor kites. The first models were made of wood and fabric, ballasted to represent a pilot, and had a rotor span of about 3 ft. They were tested successfully by hand launching, but suffered buffeting and lack of autorotation when launched from aircraft at height. The third evolution, designated “M.3”, had metal rotor blades, and after further modifications made the first successful launch and descent from a De Havilland Tiger Moth. Further developments and tests continued into February 1941. The tenth evolution scale model (M.10) had mass-balanced wooden rotors, ballast of 45.3 kg, and a rotor span of 10 ft. On March 1941, the M.10 model was successfully air-launched from a Boulton & Paul Overstrand.
The design of the man-carrying machine known as a Rotachute, also known as a Hafner H.8, evolved from November 1940 and throughout 1941. In September 1941, the Central Landing Establishment was renamed the Airborne Forces Establishment. The Rotachute Mark I design initially comprised a tubular steel framework with a single seat, rubber-mounted rotor hub, hanging control column, skid undercarriage, and a self-inflating rear fairing made of rubberised fabric with integral tailplane. The two rotor blades, of wooden construction, could achieve flapping and coning characteristics via hinges on the rotor hub. Fixed footrests were provided, plus fittings below the seat to accommodate a soldier’s weapon, such as a Bren gun. The control column offered two-axis control, rolling and pitching, with turns made via controlled rolling movement. Air Ministry Specification No. 11/42 was issued retrospectively to describe the outline requirements. The Ministry of Aircraft Production sub-contracted construction of parts to specialist firms including F. Hills and Sons, Airwork General Trading, Dynaflex, Dunlop, and H. Morris & Co. Some full size rotor trials were carried out using a pivoting rig mounted on a Ford flatbed truck, and full-size unmanned airframes were used in ground-based and inflight trials.
In January 1942, trials of the Rotachute Mark I were conducted to assess the aerodynamic characteristics while mounted on the truck-mounted rig, with pilot control of the aircraft in forward motion. On 11 February 1942, the prototype Rotachute was first manually flown from a wheeled trolley while under tow behind a Humber car at Ringway, after starting the rotor by hand. On that and on a subsequent trial, the machine rolled over after landing, sustaining damage to the blades but not to the pilot. A tethered test beneath a barrage balloon and a longer test flight at RAF Snaith were both more successful. The flexible tail section evidently offered inadequate directional stability, and the consequence was the Rotachute Mark II, that had a longer tail section braced with wooden formers, plus two landing wheels mounted below the center of gravity.
On 15 February 1942, the unit was again reorganized, to form the Airborne Forces Experimental Establishment (AFEE), still based at Ringway. The rotary wing section of AFEE continued to conduct tests on longer runways during detachments at RAF Snaith and RAF Chelveston. On 29 May 1942, the first flight of the Rotachute Mark II was achieved while under tow behind a Jeep, and several more towed flights were also successful. Meanwhile, the Mark III had been produced, with a tail section comprising a wooden framework covered in doped linen fabric plus a rigid tail plane. Starting on 2 June 1942, the Rotachute Mark III was flown at heights up to 100 ft while under tow behind a Jeep, with tow rope lengths up to 300 ft. From 9 June, successful inflight releases and landings were achieved while under tow.
From 17 June 1942, a Rotachute Mark III was air-towed behind a Tiger Moth on a 300 ft tow line. After two towed flights, the Rotachute was released at an altitude of 200 ft and made the first manned free flight and controlled landing. Further free flights were made from altitudes up to 3,900 ft. On 1 July 1942, AFEE moved its main base from Ringway to RAF Sherburn-in-Elmet. Additional directional stability was achieved in the Rotachute Mark IV that introduced endplates onto the rigid tail planes.
Although the Rotachute concept had proved to be practical, the operational requirements for such a machine never materialised. About eight Rotachutes were constructed, most being progressively converted to Mark III and then to Mark IV specifications. They continued to be flown in ground-based and inflight trials until late 1943, to help research flight characteristics for a follow-on project, the Hafner Rotabuggy, an air-towed land vehicle (Jeep) with autogiro capabilities (Ref.. 24).

Westland Welkin Mk.I (Czechmaster, Resin)

TYPE: High-altitude Interceptor

ACCOMMODATION: Pilot only

POWER PLANT: Two Rolls-Royce Merlin 76/77 liquid-cooled engines, rated at 1,250 hp each

PERFORMANCE: 387 mph at 26,000 ft

COMMENT: The Westland Welkin was a British twin-engine heavy fighter from the Westland Aircraft Company, designed in 1940 to fight at extremely high altitudes, in the stratosphere. Westland had some expertise in twin-engine aircraft; its Whirlwind Mk.I escort fighter was in full production. The word Welkin means “the vault of heaven” or the upper atmosphere. As mentioned, first conceived in 1940, it was built from 1942–43 in response to the arrival of modified Junkers Ju 86P bombers flying reconnaissance missions that suggested the German Luftwaffe might attempt to re-open the bombing of England from high altitude. But the threat was never materialized. Consequently, Westland produced only a small number of Welkins. In total 77 aircraft were built but only few of these flew. Most of the aircraft were produced without engines. One sole aircraft was modified as Welkin II which had a lengthened nose to accommodate A.I. radar (Ref.: 23).

Heinkel He 114A-2 (Airmodel, Vacu)

TYPE: Reconnaissance floatplane

ACCOMMODATION: Pilot and observer

POWER PLANT: One BMW 132K radial engine, rated at 960 hp

PERFORMANCE: 208 mph

COMMENT: The Heinkel He 114 was a sesquiwing reconnaissance seaplane produced for the German Kriegsmarine (German Navy) in the 1930s for use from warships. It replaced the company’s Heinkel He 60, but did not remain in service long before being replaced in turn by the Arado Ar 196 as standard spotter aircraft.
While the fuselage  and flotation gear of the He 114 were completely conventional, its wing arrangement was highly unusual. The upper set of wings was attached to the fuselage with a set of cabane struts, as in a  parasol wing monoplane, whereas the lower set was of much lesser span while having approximately the same chord. This general layout is not especially unusual, and is known as a “Sesquiplane”, or a biplane which has a smaller lower wing. Typically, the lower wing is about 3/4 of the span of the upper wing, and has a smaller chord as well. The He 114 has a much shorter lower wing than usual, but has the same chord as the upper wing, which keeps the wing area ratio similar.
The He 114 was never a great success, was not built in large numbers, and served with the Luftwaffe for only a short time. While the Heinkel He 60 had handled very well on the water but been sluggish in the air, the He 114’s handling while afloat was poor and its performance in the air scarcely better than the aircraft it replaced (Ref.: 24).

Heinkel He 59D-1 (Airmodel, Vacu)

TYPE: Torpedo bomber, minelaying, reconnaissance, air-sea rescue aircraft

ACCOMMODATION: Crew of four

POWER PLANT: Two BMW VI 6.0 liquid-cooled engines, rated at 660 hp each

PERFORMANCE: 137 mph at sea level

COMMENT: The Heinkel He 59 was a German biplane designed in 1930 resulting from a requirement for a torpedo bomber and reconnaissance aircraft able to operate with equal facility on wheeled landing gear or twin-floats.
In 1930, the Heinkel Aircraft Company began developing an aircraft for the Reichs­marine, precursor of the Kriegsmarine. To conceal the true military intentions, the aircraft was officially a civil aircraft. The Heinkel He 59B landplane prototype was the first to fly, an event that took place in September 1931, but it was the He 59A floatplane prototype that paved the way for the He 59B initial production model, of which 142 were delivered in three variants. The Heinkel He 59 was a pleasant aircraft to fly; deficiencies noted were the weak engine, the limited range, the small load capability and insufficient armament.
The keels of the floats were used as fuel tanks – each one holding 900 l of fuel. Together with the internal fuel tank, the aircraft could hold a total of 2,700 l of fuel. Two fuel tanks could also be placed in the bomb bay, bringing the total fuel capacity up to 3,200 l. The propeller was fixed-pitch with four blades.
During the first months of WW II, the He 59 was used as a torpedo- and minelaying aircraft. Between 1940 and 1941 the aircraft was used as a reconnaissance aircraft and in 1941-42 as a transport, air-sea rescue, and training aircraft. In total 142 aircraft were built in various subtypes. The trainer and air-sea rescue version was designated Heinkel He 59D-1. The trainer models survived slightly longer in service than operational models, but all had been retired or destroyed by 1944 (Ref.: 24).