Category Archives: Luftwaffe

Deutschland / Germany

Messerschmitt Me 262A-1a with Messerschmitt Me 262A-2a/U-2, “Mistel”, (“Mistletoe”), (MPM)

TYPE: Anti-ship and -fortification destroyer Messerschmitt Me 262A-1a missile. Project

ACCOMMODATION: Crew of two in Messerschmitt Me 262A-2a/U-2 only

POWER PLANT: Two Junkers Jumo 004B turbojet engines each aircraft, rated at 950 kp thrust each

PERFORMANCE: No data available

COMMENT: In the last stage of WW II in Europe the RLM made great effort to deploy a great variety of composite aircraft (“Misteln”, “Mistletoes”) against enemy ground installations, troop concentrations, harbor facilities, bridges, ships, etc. and even bomber formations. In most cases elder or not for service qualified aircraft were used as un-manned,  lower bomber compartment but also reconstruction of existing aircraft or complete new constructions – most made of non-strategical materials like wood etc. – were proposed. The bomber compartment was filled with explosives and guided to the vicinity of its target by a single seat fighter temporarily attached to a superstructure above the fuselage.
One of the extraordinary proposals was the combination of a Messerschmitt Me 262A-1a or Me 262A-2a/U2 as guide aircraft to an un-manned Messerschmitt Me 262A-1 as guided bomb. The cockpit canopy was faired over and all equipment stripped down to only those needed to keep the bomb flying. Nose of the aircraft was filled with explosive as well as two additional tanks setup in the fuselage. Three bomb load versions were proposed:
Model A. Armored nose of the fuselage and additional tanks filled with 4,460 kg of liquid explosive,
Model B: Armored nose formed of solid explosive, additional tanks filled with blocks of solid explosive, total amount restricted and
Model C: Armored nose formed of 2,450 kg solid explosive, additional tanks filled with 2,760 kg liquid explosive, total amount 5,210 kg.
The upper component of this “Mistel” composition – number of “Mistel” variant not clearly known – was a two-seater Messerschmitt Me 262A-2/U-2. Besides the pilot a second crew member was lying in prone position in a glazed nose section of the fuselage. He guided the bomb into the target by means of a television set “Tonne-Seedorf”. In the cone of the lower (bomb) compartment a television camera (“Tonne”) was installed and the radio operator had a television tube (“Seedorf”) with relative high resolution. By means of radio-control the missile was guided to the target.
The project was soon rejected. It became clear that a pilot of a Messerschmitt Me 262 had enough problems with his own machine and to handle two of these excentric aircraft together seemed to be impossible.

Henschel Hs P.87 (Planet, Resin)

TYPE: Light bomber, ground attack aircraft. Project.

ACCOMMODATION: Pilot and observer

POWER PLANT: One Daimler-Benz DB 610 liquid-cooled engine, rated at 2,900 hp, driving two four-bladed pusher propellers

PERFORMANCE: 466 mph

COMMENT: In 194/42 the design team of Henschel Aircraft Company proposed an advanced project of a fast light bomber and ground attack aircraft. Power was provided by a single Daimler-Benz DB 610 engine that in fact consisted of two Daimler-Benz DB 605 liquid-cooled engines, joined side-by side. The engine drove two four-bladed pusher type propellers via an extension shaft. A similar design but powered by a Daimler-Benz DB 613 was the Henschel Hs P. 75 fighter and interceptor project. Both designs were radical in so far as a canard arrangement was proposed with elevators in front and the wing positioned to the rear. By that enough space was available to integrate the wide and bulky power unit. Furthermore, a large weapon bay in the in the forward fuselage was available. The disadvantage of this arrangement is the permanent shifting of the center of gravity. Vertical fins were located at the wingtips. Intensive work was done concerning the lay-out of the cockpit in order to give the two crew members an excellent view forward. In case of emergency the cabin could be blown up in order to prevent a collision with the eight-bladed propellers. Detailed construction was in an advanced stage when the RLM refused this project with the flimsy comment “… the pilots couldn’t acclimatize with a propeller in the back and the elevators in front”. So further work on this project was stopped (Ref.: 16, 17).

Heinkel He 343A-1 (Planet Models, Resin)

TYPE: Medium bomber. Project.

ACCOMMODATION: Pilot and observer

POWER PLANT: Four Heinkel/Hirth HeS 011 turbojet engines, rated at 1,300 kp each

PERFORMANCE: 565 mph

COMMENT: The Heinkel He 343 was a four-engine jet bomber project by Heinkel Aircraft Company in the last years of WW II. In 1944 a total of 20 of these aircraft were ordered. For shortening the development time and for re-use of existing parts, its general design was envisioned along the lines of an enlarged Arado Ar 234 “Blitz” (“Lightning”). For a choice of engines, the Junkers Jumo 004 and the Heinkel HeS 011 were planned. The DFS (Deutsche Forschungsinstitut für Segelflug), (German Research Institute for Gliding Flight) was involved in the project and created the project known as P.1068. By the end of 1944, work was nearly finished by the Heinkel engineers, with parts for the He 343 prototype aircraft either under construction or in a finished state, when the order was cancelled due to the “Jägernotprogramm (Emergency Fighter Program). Four versions were planned: the He 343A-1 bomber, the He 343A-2 reconnaissance aircraft, and the He 343A-3 and He 343B-1 “Zerstörer” (“Destroyer”) heavy fighters.
The Heinkel He 343A-1 was to be the bomber version. Depending on the engines used, the bomb load ranged between 2000 kg to 3000 kg, with 2000 kg to be carried internally, and 1000 kg to be carried externally. Trials were to be held with the Fritz X radio controlled bomb, which would have also added a third crew member. Defensive armament consisted of two fixed rear firing MG 151 20 mm cannon with 200 rounds each, which were mounted in the rear fuselage. None aircraft was completed. However, after WW II the Soviet Union utilized the design as the basis for the development of the Ilyushin Il-22, changing some of the parameters such as size and crew numbers. One prototype was built and flown. The results of the tests were used in development of the Ilyushin Il-28 (Ref: 24).

Focke-Wulf Ta 183/III (Planet, Resin)

TYPE: Fighter, Project

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel-Hirth HeS 011 turbojet engine, rated at 1,300 kp

PERFORMANCE: 599 mph

COMMENT: On February 1945 the Tank design team proposed a second design of the Focke-Wulf/Tank Ta 183 turbojet fighter although the RLM accepted the first design for production. The new aircraft was similar to the Ta 183 design, except the wings were swept back at 35 degrees and the cockpit was set farther aft. Also, the tail unit was of more conventional design, with a curvilinear sweep of the fuselage into the vertical tail. This seemed to be necessary because it was expected that the long vertical tail of Ta 183 led to vibrations. By that the horizontal tail planes were mounted lower at the end of the fuselage. As with many other projects al work was halted with the end of the WW II two months later (Ref.: 17).

Henschel Hs P.75 (CMK, Resin)

TYPE: Fighter, fighter bomber, Project

ACCOMMODATION: Pilot only

POWER PLANT: One Daimler Benz DB 613 liquid-cooled engine, rated at 3,500 hp

PERFORMANCE: 491 mph

COMMENT: In early 1941 the OKL asked for a possible successor for the Messerschmitt Me 110 heavy fighter. Among others the Henschel Aircraft Company proposed a design of a futuristic and unusual configuration. This design, the Hs P.75, featured a tapered fuselage with slightly swept-back wings set back to the rear fuselage of the aircraft and a pair of slightly swept-back canards located on the nose. The widened fuselage housed a powerful engine that drove three-bladed contra-rotating pusher propellers at the rear via an extension shaft. As power unit a Daimler Benz DB 610 engine, which were two DB 605 liquid-cooled engines joined side-by-side, was proposed. These were the same engines that the Heinkel He 177 bomber used and became known for overheating and catching fire.  So it was decided to install the Daimler Benz DB 613, in fact two coupled DB 603 liquid-cooled engines, rated at 3,500 hp. A vertical tail unit was mounted beneath the fuselage additionally functioning as a tail bumper and protected the propellers from stroking the ground during take-off. A tricycle landing gear arrangement was chosen and a single pilot sat in the cockpit located about midway along the fuselage. All weapons were mounted in the nose. The advantage of the pusher propeller and the forward canard design was the excellent view of the pilot and concentration of weapons in the nose. The disadvantage would be the engine cooling and the pilot’s safely exit in case of emergency. Although good results were obtained in wind tunnel testing this design was not followed up further.
Notable is the fact that this basic design was realized in several WW II aircraft design such as Curtiss XP-55 “Ascender” and Kyushu J7W1 “Shinden” (Ref.: 17).

 

Focke-Wulf Fw P. 031 0239/10 (3 x 1000 Bomber Project B), (Planet, Resin)

TYPE: Fast medium bomber.Project

ACCOMMODATION: Pilot only

POWER PLANT: Two Heinkel-Hirth HeS 011 turbojet engines, rated at 1,300 kp each

PERFORMANCE: 659 mph at 45,900 ft

COMMENT:  In 1944, Focke-Wulf Aircraft Company projected three designs of a bomber using two Heinkel-Hirth He S 011 turbojets. These bombers were known under the unofficial designation  3 x 1000 Bomber-Projekt A, Projekt B and Projekt C. The designation “1000x1000x1000” meant that the aircraft could carry a 1000 kg (2205 lbs) bomb load over a distance of 1000 km (621 miles) and at a speed of 1000 km/h (621 mph).
The second design under the Focke-Wulf  internal designation Fw P.031 0239/10 “3×1000 Bomber, Projekt B” was of a flying wing layout. There was a small fuselage which held the cockpit and forward landing gear. The wing was swept back at 35 degrees and the fuel load in flexible tanks was carried ahead of the main wing spar. The engines and main landing gear were located behind the main wing spar. Two Heinkel-Hirth He S 011 jet engines each developing 1300 kg of thrust were fed by air intakes located in the wing leading edge near the wing roots.  The wing tips were bent downwards to act as vertical stabilizers and contained small rudders.  The ailerons also served as elevators and in addition small deflectors were mounted within the jet exhaust, one of the first uses of thrust vectoring.  The main landing gear retracted inwards and the nose gear swung up and forward. A single pilot sat in the extensively glazed cockpit located in the extreme nose, and no armament was planned at this stage in the development. A 1000 kg bomb load could be carried in the internal bomb bay located in the center wing. Since these designs would have taken several years to complete, the end of the war ended all development (Ref.: 17).

Heinkel He P.1078A (Frank Airmodel, Resin)

TYPE: Interceptor. Project

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel/Hirth HeS 011 turbojet engine, rated at 1,300 kp

PERFORMANCE: 609 mph

COMMENT: As part of the “Emergency Fighter Program” (”Jägernotprogramm”), at the beginning of 1945 a program was launched by the OKL (Oberkommando der Luftwaffe, High Command of the Luftwaffe) for a new generation of fighter/interceptor aircraft in order to replace the winner of the “Volksjäger” fighter design competition, the Heinkel He 162A “Spatz” (“Sparrow”) . The new aircraft was intended to have superior performance in order to deal with high altitude threats such as the the Boeing B-29 “Superfortress”, but only had a 30-minute endurance figure.
Heinkel produced three different designs of the project (He P. 1078A, He P. 1078B, and He P. 1078C) which were submitted in February 1945. The high-altitude fighter designs brought forward by other German aircraft makers were the Messerschmitt Me P. 1110, Focke-Wulf Ta 183 “Huckebein”, Blohm & Voss Bv P.212 and Junkers EF 128, the official winner of the competition. After being subject to severe criticism, the project was cancelled by Heinkel at the end of February 1945. Other reports state that these Heinkel projects have never been submitted to the OKL. In fact, members of the Heinkel construction bureau were working on these designs under U.S. supervision after WW II during the summer of 1945 (Ref.: 24).

Henschel Hs 132A V1 (A+V Models, Resin)

TYPE: Dive-bomber and interceptor

ACCOMMODATION: Pilot in prone position

POWER PLANT:  One BMW 003A turbojet engine, rated at 800 kp

PERFORMANCE: 485 mph at 19,685 ft

COMMENT: Early in 1943, the RLM issued a specification for a single-seat attack aircraft to combat the anticipated Allied invasion in Europe. Although the specification called for a piston-engine powered dive bomber it was soon realized that only a turbojet-driven aircraft could hope to match the proposed performance requirements. The Henschel Company submitted a design which was approved as Henschel Hs 132 and placed accent of simplicity and ease to manufacture. The wing was a wooden structure with plywood skinning, and the fuselage was a circular metal monocoque. The single turbojet was mounted above the fuselage, exhausting over the rear fuselage and between the twin vertical surfaces of the tail assembly. A tricycle landing gear was to be used and the extensively glazed cockpit was completely faired with the fuselage. The pilot was in prone position better to withstand the high G-forces of the fast and steep dive during the bomb run. It was estimated that during the dive a speed of more than 570 mph could be reached and after the bomb was released the aircraft was pulled up thus inducing acceleration forces of up to 10 G. A contract for six prototypes was placed in May 1944, and construction began in March 1945. When the war in Europe ended the Henschel Hs 132 V1 was nearly complete and captured by Soviet forces

NOTICE: To ascertain the practicability of the prone position for dive bomber pilots, the DLV ordered in early 1943 a small prone-pilot research aircraft that was designed and built by the FFG Berlin (Flugtechnische Fachgruppe/Aerotechnical Group, University Berlin) and designated Berlin B9. The design was a low winged, twin-engine aircraft of standard layout. It was built of mixed construction and could accept up to 22 G. It was flown by many experienced pilots and showed the advantages of a prone position for pilots to tolerate high g-forces.  (Ref.: 17).

Messerschmitt Me 309 V1 (Huma)

TYPE: Short- and medium-range interceptor

ACCOMMODATION: Pilot only

POWER PLANT: One Daimler-Benz DB 603A-1 liquid-cooled engine, rated at 1,750 mph

PERFORMANCE: 496 mph at 26,200 ft

COMMENT: During 1941 the Messerschmitt design bureau began work on a new fighter intended to succeed the Messerschmitt Me 109. Designated Me 309, the new fighter employed a nose-wheel undercarriage. The first prototype Me 309 V1 began taxi-ing trials on June 1942 and the first test flight was not attempted until July 1942. Subsequent flight tests revealed some instability, and the prototype was grounded for several modifications.
Despite continual modifications, the characteristics of the fighter were still not entirely satisfactory. On November 1942 a flight comparison between the Me 309 V1 and a standard Me 109G revealed the fact that the older fighter could turn-out its potential successor. In the meantime three further prototypes were ready for test flights but the results showed that numerous modifications were necessary. During summer 1943, however, the complete program was abandoned owing to the superior qualities of the Focke-Wulf Fw 190D and Focke-Wulf Ta 152.
Prior to the termination of the program several variants of the basic design were proposed including different engines as Daimler-Benz DB 603H and Junkers Jumo 213. Another development, the Messerschmitt Me 609, with two Me 309 fuselages joined by a constant center wing, was not proceeded with (Ref.: 11).

Messerschmitt Me 209H V1 (Planet Models, Resin)

TYPE: High-altitude fighter

ACCOMMODATION: Pilot only

POWER PLANT: One Daimler-Benz DB 627B liquid-cooled engine, rated at 2,000 hp

PERFORMANCE: 460 mph at full boost altitude

COMMENT:  In April 1943 the Messerschmitt design bureau submitted proposals for a high-altitude fighter designated Messerschmitt Me 209H. This project envisaged the insertion of an additional rectangular center section in the wing to increase overall span and gross area, and the use of either Daimler-Benz DB 628A high altitude engine or the DB 603U which was a DB 603E equipped with a TKL 15 turbo-supercharger. Owing to the time element Messerschmitt was instructed to embody some of its proposals for the Me 209H into the Me 109H which, making extensive use of Me 109G components, offered a quicker solution to the requirement for a fighter of superior altitude capability.
Nevertheless, the Messerschmitt bureau persisted with the development of the Me 209H, detail design being completed on October 1943, and work on the prototype, the Me 209H V1, began shortly afterwards, but proceeded slowly, and was delayed as a result of an air attack in February 1944 in which the partly assembled prototype was damaged, and some of its components destroyed. Thus, the Me 209H V1 was not rolled out until June 1944, by which time the entire Me 209 program had been officially abandoned. It had been intended that the Me 209H V1 should receive the Daimler-Benz DB 627 which was basically a DB 603 G with aftercooler and two-stage mechanical supercharger, and afforded 2,000 hp for take-off. The engine drove a four-bladed wooden airscrew and the annular radiator was discarded in favor of radiators in the leading edge of the wing center section. No records exists of the results of flight testing or the ultimate fate of the sole Me 209 high-altitude prototype (Ref.: 7).