Junkers Ju 288 V3 (Airmodel, Vacu-formed)

TYPE: Medium bomber

ACCOMMODATION: Crew of three

POWER PLANT: Two BMW 801MA radial engines, rated at 1,677 hp each

PERFORMANCE: 388 mph

COMMENT: The Junkers Ju 288, originally known within the Junkers Company as the EF 074, was a German bomber project designed during WW II, which only ever flew in prototype form. The first of an eventual 22 development aircraft flew on 29 November 1940.
The Ju 288 was the winner of the “Bomber B” contest, although the contest was started by Junker’s submission of the EF 074 and their selection was never really in doubt. “Bomber B” intended to replace the Junkers Ju 88 with a design that was larger, offer cabin pressurization for high altitude work, have longer range, a much greater war load, be even faster, and have improved defensive firepower. The design would replace all the bombers then in German Luftwaffe service.
Delivering all of these requirements in a single airframe demanded much more powerful engines, and all of the “Bomber B” concepts relied on the Junkers Jumo 222 engine to deliver this power. Ultimately, the Jumo 222 was a failure in spite of massive effort and several redesigns over a period of several years. No suitable replacement was ever forthcoming, dooming the Ju 288 program, and leaving the Luftwaffe with older bomber designs during the second half of World War II.
Junkers had been outlining a variety of improved models of the Ju 88 since 1937, powered by the planned Jumo 222 multibank engine, or Jumo 223 inline multibank diesel of greatly increased power of at 2,000 horsepower. The EF 074 was essentially a scaled-up Ju 88, sharing its general layout and most of its fuselage and wings with extensions in various places. The nose was redesigned with a more streamlined “stepless” cockpit, having no separate windscreen panels for the pilot and co-pilot. This layout allowed cabin pressurization to be more easily implemented. This design approach had been growing in favour, subsequently appearing in various German types, notably the Heinkel He 111P and H’s.
No serious work was undertaken on these versions, but after Heinrich Hertel left Heinkel and joined Junkers in 1939, the EF 074 design was submitted to the RLM in May 1939. Accordingly, the RLM sent out the specifications for the “Bomber B” design competition in July, the Ju 88 retroactively becoming the second aircraft to be designated “Bomber A”, as the June 1936 specification for the Heinkel He 177 also had that name. The “Bomber B” program aimed at replacing all of the medium bombers in the Luftwaffe inventory with a new design based on the EF.74 or something with equal performance. “Bomber B” was intended to have even better speed than the Ju 88, high-altitude cruising with a pressurized cockpit, heavier defensive armament, range allowing it to cover any point in the British Isles, and a 4,000 kg war load, double that of the earlier generation bombers. A number of companies returned proposals, but these were to some extent a formality, the EF.74 had already been selected as the winner, and of the rest of the designs submitted, only the Focke-Wulf Fw 191 and Dornier Do 317 progressed even as far as prototypes, and the Henschel Hs 130 coming under consideration as a late entrant.
Work began on building prototypes in early 1940, and the first example was completed by mid 1940. Power was supposed to be supplied by two Junkers Jumo 222 six-bank, four cylinders per bank, over 2.000 hp output class powerplants, but problems with the Jumo 222’s development — as with almost every new concept for over 2.000 hp output reciprocating aircrafts engienes then underway in the Third Reich — meant the first prototypes flew with BMW 801 radial engines, instead. The first flight-quality Jumo 222s did not arrive until October 1941, and even at this point it was clear they were nowhere near ready for full-scale production. When it became apparent the Jumo 222 was not likely to become a viable powerplant, in May 1942, Junkers proposed replacing them, for their projected Ju 288C version, with the much heavier Daimler Benz DB 606‘s instead; the same 1.5 tonne, twin-crankcase „weldet-together engines“ that Reichsmarschall Hermann Göring complained about some three months later, regarding the Heinkel He 177’s own endless powerplant troubles
Late in January 194, after protracted ground trials, the first prototype, the Ju 288 V1, was flown for the first time. It was powered by two BMW 801 MA engines, each rated at 1,600 hp. The defensive armament arrangement reverted to that of the original EF 074 proposal, dummy barbettes being mounted in forward dorsal and aft ventral positions.
During the early spring 1941, the first prototype was joined by the Ju 288 V2 which differed from its predecessor only in having spoiler-type dive brakes in place of slatted-type surfaces which were also featured by the Ju 288 V3, this third prototype commencing flight trials during the early summer, by which time work had begun on a further series of prototypes, the first of these being the Ju 288 V4.
The Ju 288’s intricate main landing gear system’s design proved to be troublesome. Such a complex main gear design, with only the single pivoting retraction point for its oleo struts taking the primary stress of touchdown, was likely only one of the many potential sources of trouble causing the Ju 288’s main gear units to repeatedly collapse on touchdown.
Although the Junkers Ju 288 never even reached production status, let alone official operational service, the aircraft did see limited combat duty. In 1944, following the cancellation of the Ju 288 programme, the surviving A and C series prototypes were hurriedly fitted with defensive armament and equipment and deployed as reconnaissance bombers on the Western Front. Very few missions were flown, owing to the scarcity of aviation fuel and spare parts, and the unresolved problems with the aircraft’s power plant and undercarriage. It is believed] that the few Ju 288’s were attached to the same unit operating the small number of Junkers Ju 388 reconnaissance planes that saw service (Ref.: 7. 24).

Lavochkin La-9, 165th IAP, (MPM)

TYPE: Fighter aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Shvetsov Ash-82FN radial engine with a two-stage supercharger and fuel injection, rated at 1,850 hp

PERFORMANCE: 428 mph

COMMENT: The Lavochkin La-9 was a Soviet fighter aircraft produced shortly after World War II. It was a piston engined aircraft produced at the start of the turbojet age.
The Lavochkin La-9 represents a further development of the Lavochlin La-126 prototype. The first prototype, designated La-130 was finished in 1946. Similarity to the famous Lavochkin La-7 was only superficial. The new fighter had an all-metal construction and a laminar flow wing. Weight savings due to elimination of wood from the airframe allowed for greatly improved fuel capacity and four-cannon armament. Mock combat demonstrated that the La-130 was evenly matched with the La-7 but was inferior to the Yakovlev Yak-3 in horizontal flight. The new fighter, officially designated La-9, entered production in August 1946. A total of 1,559 aircraft were built by the end of production in 1948.
Like other aircraft designers at the time, Lavochkin was experimenting with using turbojet propulsion to augment performance of piston-engined fighters. One such attempt was Lavochkin La-130R with an RD-1Kh3 liquid-fuel rocket engine in addition to the Shvetsov Ash-82FN piston power plant. The project was cancelled in 1946 before the prototype could be assembled.
A more unusual approach was Lavochkin La-9RD which was tested in 1947–1948. It was a production La-9 with a reinforced airframe and armament reduced to two cannons, which carried a single RD-13 pulsejet (a German Argus As 014 engine which powered the Fieseler Fi 103, V-1 flying bomb, probably taken from surplus Luftwaffe stocks) under each wing. The 45 mph increase in top speed came at the expense of tremendous noise and vibration. The engines were unreliable and worsened the handling. The project was abandoned although between 3 and 9 La-9RD were reported to perform at airshows, no doubt pleasing the crowds with the noise.
One of the recommendations from the government testing of Lavochkin La-9 prototype was to further develop it into a long-range escort fighter, the Lavochkin La-11 (Ref.: 24).

Curtiss SC-2 “Seahawk” (Smer-Models)

TYPE: Scout seaplane

ACCOMMODATION: Pilot only, plus one passenger

POWER PLANT: One Wright R-1820-76 “Cyclone” radial engine, rated at 1,425 hp

PERFORMANCE: 315 mph

COMMENT: Last of a long line of US Navy scouting airplanes designed to serve aboard battleships as well as carriers and from land bases, the Curtis SC-1 Seahawk originated to a specification issued to industry in June 1942. The requirement was for a convertible land or floatplane with a much improved performance over the observation/scouts then in service and with provision for catapult launching.
The Curtiss design proposal in response to the specification was quickly adopted by the Navy, which issued a letter of intent on October,1942 and a contract for two prototypes on March 1943, with the designation XSC-1. A production order for 500 SC-1 followed on June 1943, and the first XSC-1 made its first flight on February 1944. Flight testing continued through April, when the last of the seven pre-production aircraft took to the air.
The first serial production “Seahawks” were delivered on October 1944, to the USS CB-2 Guam, an Alaska-class large cruiser.  She carried four Seahawk floatplanes, housed in two hangars with a pair of aircraft catapults mounted amidships.
All 577 Seahawk aircraft eventually produced for the Navy were delivered on conventional landing gear and flown to the appropriate Naval Air Station, where floats were fitted for service as needed.
Nine further prototypes were later built as Curtis SC-2 Seahawk, with a more powerful engine, a modified cockpit with a blown canopy, a second seat in the fuselage below the pilot with two little windows on both sides and a redesigned tail plane to improve stability.
Series production was not undertaken because by the end of the war, seaplanes were becoming less desirable, being replaced soon afterward by helicopters (Ref.: 24).

Yakovlev Yak-3 (Heller)

TYPE: Fighter aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Klimov M-105PF2 liquid-cooled piston engine, rated at 1,290 hp

PERFORMANCE: 401 mph at 13,451 ft

COMMENT: The Yakovlev Yak-3 was a single-engine single-seat WW II Soviet front line fighter aircraft. Robust and easy to maintain, it was much liked by pilots and ground crew alike. It was one of the smallest and lightest major combat fighters fielded by any combatant during the war. Its high power-to-weight ratio gave it excellent performance. It proved a formidable dogfighter.
The origins of the Yak-3 went back to 1941 when the I-30 prototype was offered along with Yakovlev I-26 (Yak-1) as an alternative design. The I-30, powered by a Klimov M-105P engine, was of all-metal construction, using a wing with dihedral on the outer panels. Like the early Yak-1, it had a 20 mm ShVAK cannon firing through the hollow-driveshaft nose spinner and twin 7.62 mm synchronized ShKAS machine guns in cowl mounts ahead of the cockpit on the fuselage, but was also fitted with a ShVAK cannon in each wing. The first of two prototypes was fitted with a slatted wing to improve handling and short-field performance while the second prototype had a wooden wing without slats, in order to simplify production. The second prototype crashed during flight tests and was written off. Although there were plans to put the Yak-3 into production, the scarcity of aviation aluminum and the pressure of the German invasion led to work on the first Yak-3 being abandoned in late fall 1941.
In 1943, Yakovlev designed the Yak-1M which was a lighter version of the Yak-1. It incorporated a wing of similar design, but with smaller surface area and had further aerodynamic refinements, like the new placement of the oil radiator, from the chin to the wing roots (one of the visual differences with the Yak-1, -7, -9). A second Yak-1M prototype was constructed later that year, differing from the first aircraft in that it had plywood instead of fabric covering of the rear fuselage, mastless radio antenna, reflector gunsight and improved armor and engine cooling. The chief test pilot for the project P. M. Stefanovsiy was so impressed with the new aircraft that he recommended that it should completely replace the Yak-1 and Yak-7 with only the Yak-9 retained in production for further work with the Klimov VK-107 engine. The new fighter designated the Yak-3 entered service in 1944, later than the Ya-9 in spite of the lower designation number.
The first 197 Yak-3 were lightly armed with a engine-mount 20 mm ShVAK cannon and one 12.7 mm UBS- synchronized machine gun, with subsequent aircraft receiving a second UBS for a weight of fire of 2.72 kg per second using high-explosive ammunition. All armament was installed close to the axis of the aircraft (cannon mounted in the engine “vee”, and firing through the propeller boss; and synchronized machine guns in the fuselage above the engine), adding to the accuracy and leaving wings unloaded.
Production accelerated rapidly, so that by mid-1946, 4,848 had been built. Before the end of the war it was also flown by Polish Air Forces (of the Polish People’s Army formed in USSR) and after the war ended, it was flown by the Yugoslav Air Force (Ref.: 24).