Category Archives: Luftwaffe

Deutschland / Germany

Arado Ar 240A-2, JG 5 Eismeergeschwader, (Revell Models)

TYPE: Heavy fighter

ACCOMMODATION: Crew ot two

POWER PLANT: Two Daimler-Benz DB 601E liquid-cooled  engines, rated at 1,175 hp each

PERFORMANCE: 385 mph

COMMENT: The Arado Ar 240 was a German twin-engine, multi-role heavy fighter aircraft, developed for the Luftwaffe during WW II by Ardo Flugzeugwerke. Its first flight was in 1940, but problems with the design hampered development, and it remained only marginally stable throughout the prototype phase. The project was eventually cancelled, with the existing airframes used for a variety of test purposes.
The Ar 240 came about as the response to a 1938 request for a much more capable second-generation heavy fighter to replace the Messerschmitt Bf 110, which was becoming outdated. Both Arado and Messerschmitt responded. Messerschmitt’s response, the Me 210, was a totally new design, but thanks to Messerschmitt’s experience with the Zerstörer (“Destroyer”) concept, it would be able to enter service quickly. Arado’s design was considerably more ambitious for the smaller firm, a dream project of Arado’s chief designer, Walter Blume, since the mid-1930s. While it would take some time before deliveries of the Arado design could begin, the Reichsluftfahrtministerium (RLM, German Aviation Ministry was nevertheless interested enough to order prototypes of both designs.
Prior to this point, Arado had invested heavily in several lines of basic research. One was the development of the “Arado travelling flap” which offered excellent low-speed lift performance. Another was ongoing work in the design and construction of pressurized cockpits, which dramatically lowered pilot fatigue for any flight above about 14,760 ft. Finally, they had also invested in a technically advanced remote-control defensive gun system, which they had been experimenting with for several years. The system used a gunsight located in the rear cockpit, operated by the navigator/gunner, which had optics on both the top and bottom of the aircraft, allowing aim in any direction. The gunsight was hydraulically connected to well-streamlined pancake-shaped, remotely-operated turrets on the top and bottom of the aircraft. For the Ar 240 design, the Arado engineers combined all this research into a single airframe.
For outright performance, they used as small a wing as reasonable, thereby lowering parasite drag (at the expense of greater lift-induced drag). Normally this would make the plane have “impossibly high” landing speeds, but this was offset by the use of a huge travelling flap and leading edge slats for high low-speed lift. When the flaps were extended, the upper portion of the ailerons would remain in place while the lower portion extended rearward, essentially increasing the wing area. A Jumo 222-powered Junkers Ju 288 prototype with ducted spinners, of a similar type to that intended for the Ar 240.
The Daimler-Benz DB 601 inline engines were conventionally installed and equipped with three-blade, fully adjustable propellers. The radiators were somewhat unusual however, quite similar to those fitted to the Junkers Ju 88 which pioneered them – but much more closely resembling the intended installation of the radiators intended for the junkers Ju 288, when powered by its intended multibank Junkers Jumo 222 liquid-cooled 24-cylinder engines – for both types, consisting of an annular block located in front of each engine, but with the Ar 240 partially covering each of them with an oversized, ducted flow-through propeller spinner forward of each radiator unit, with air entering through a large hole in the front of the spinner and exiting out of the cowl flaps, as the Jumo 222-powered Ju 288 design was intended to have. As with the Jumo inline-powered versions of the Ju 88, this made the plane look as if it were mounting a radial engine, and the Ar 240, like later Jumo inline-powered fighter aircraft from the Focke-Wulf firm (the Fw 190D, Ta 152 and twin-engined Ta 154) also benefitted from the simpler setup of an annular radiator just forward of the engine.
The fuel cells in the wings were provided with a newly developed self-sealing system that used thinner tank liners, allowing for more fuel storage. The liners could not be easily removed as they stuck to the outer surface of the tank, so in order to service them, the wing panelling had to be removable. This led to a complex system for providing skinning stiff enough to be handled in the field, complicating construction and driving up weight.
As with all German multi-use aircraft designs of the era, the aircraft was required to be a credible dive bomber. The thick wing panelling was not suitable for piercing for conventional dive brakes, so a “petal”-type brake was installed at the extreme rear of the fuselage — appearing much like what had been trialled with the Dornier Do 217 — which, unlike the Do 217’s vertically-opening “petals”, opened to the sides instead when activated. When closed the brake looked like a stinger, extending beyond the horizontal stabilizer and twin fins.
Finally, the cockpit was fully pressurized. This would not have been easy if the armament had to be hand-operated by the gunner, as it would have required the guns to penetrate the rear of the cockpit canopy. However, the remote control system allowed them to be located in turrets in the unpressurized rear of the fuselage.
All of this added weight, and combined with the small wing, led to a very highwing loding of 330 kg/m2, compared to an average of about a 100 for a single-seat fighter.
Technical specifications were first published in October 1938, followed by detailed plans later that year. In May 1939, the RLM ordered a batch of six prototypes. The first Ar 240 V1 prototype took to the air on 25 June 1940, and immediately proved to have poor handling in all axes, also tending to overheat during taxiing.
The handling was thought to be the result of the ailerons being too small, given the thick wing, so the second prototype was modified to have larger ones, as well as additional vertical fin area on the dive brakes to reduce yaw. In addition, small radiators were added to the landing gear legs to improve cooling at low speeds, when the gear would normally be opened. Ar 240 V2, first flew on 6 April 1941, and spent most of its life at the factory in an experimental role.
Ar 240 V3 followed, the first to be equipped with the FA 9 rear-firing armament system, developed jointly by Arado and DVL, armed with a 7.92 mm MG 81Z machine gun. Ar 240 V4 was the first to include an operational dive brake, and flew on 19 June 1941. Ar 240 V5 and the V6 followed in December and January, including the upgraded FA 13 system, using two 13 mm MG 131 machine gun in place of the MG 81Z for a considerable boost in firepower. Ar 240 V7 and V8 acted as prototypes for the planned Ar 240 B, which was to use two Daimler Benz DB 605As, while Ar 240 V9, V10, and V11, and V12 served as prototypes of the Ar 240 C.
The Ar 240’s excellent performance quickly led to the V3, V5 and V6 being stripped of their armament, including the defensive guns, and used as reconnaissance aircraft over England, where no other two-seater could venture by 1942. A number of pre-production Ar 240As served on the northern part oft he Eastern Front overflying Soviet military positions. In grand total 14 Arado Ar 240 were built (Ref.: 24).

Messerschmitt Me 264 V1, (Special Hobby Models)

TYPE: Strategic bomber, long-range maritime reconnaissance aircraft

ACCOMMODATION: Crew of eight

POWER PLANT: Four Junkers Jumo 211J inline engines, rated at 1340 hp each or four BMW 801G radial engines, rated at 1,750 hp each.

PERFORMANCE: 339 mph at 36,000 kg at 20,015 ft

COMMENT: The Messerschmitt Me 264 was a long-range strategic bomber developed during World War II for the German Luftwaffe as its main strategic bomber. The design was later selected as Messerschmitt‘s competitor in the RLM (Reichsluftfahrt-ministerium, German Air Ministry) Amerikabomber programme, for a strategic bomber capable of attacking New York City from bases in France or the Azores.
Three prototypes were built but production was abandoned to allow Messerschmitt to concentrate on fighter production and the Junkers Ju 390 was selected in its place. Development continued as a maritime reconnaissance aircraft instead.
The origin of the Me 264 design came from Messerschmitt’s long-rangereconnaissance aircraft project, the P.1061, of the late 1930s. A variant on the P.1061 was the P.1062 of which three prototypes were built, with only two “engines” to the P.1061’s four, but they were, in fact, the more powerful Daimler-Benz DB 606 “power systems”, each comprising a pair of DB 601 inverted V-12 engines. These were also successfully used in the long-range Messerschmitt Me 261, itself originating as the Messerschmitt P.1064 design of 1937. The DB 606’s later use in the Heinkel He 177A‘s airframe design resulted in derision by Reichsmarschall Hermann Göring as „welded-togehter engines in August 1942, due to badly designed engine installations. In early 1941, six P.1061 prototypes were ordered from Messerschmitt, under the designation Messerschmitt Me 264. This was later reduced to three prototypes.
The progress of these projects was initially slow, but after Germany had declared war on the United States four days after the Pearl Harbor attack by Imperial Japan, the Reichsluftfahrtministerium started the more serious Amerikabomberprogramme in the spring of 1942 for a very long range bomber, with the result that a larger, six-engine aircraft with a greater bomb load was called for. Proposals were put forward for the Junkers Ju 390, the Focke-Wulff Ta 400, a redesign of the unfinalized and unbuilt Heinkel He 277 design, and a design study for an extended-wingspan six-engine Messerschmitt Me 264B. The need for six engines was prompted by the ongoing inability of Germany’s aviation powerplant designers to create combat-reliable powerplants of 2,000 PS and above power output levels, thwarting efforts to do the same with just four engines instead. As the similarly six-engined Junkers Ju 390 could use components already in use for the Junkers Ju 290 this design was chosen.
The Me 264 was not abandoned, however, as the Kriegsmarine (German Navy) separately demanded a long-range maritime patrol and attack aircraft to replace the converted Focke-Wulf Fw 200 Condor in this role. As a result, the two pending prototypes were ordered to be completed as development prototypes for the Me 264A ultra long-range reconnaissance aircraft.
The Me 264 was an all-metal, high-wing, four-engine heavy bomber of classic construction. The fuselage was round in cross-section and had a cabin in a glazed nose, comprising a “stepless cockpit” with no separate windscreen section for the pilots, which was common for most later German bomber designs. A strikingly similar design was used for the Boeing B-29 Superfortress, of slightly earlier origin. The wing had a slightly swept leading edge and a straight trailing edge. The empennage had double tail fins. The undercarriage was a retractable tricycle gear with large-diameter wheels on the wing-mounted main gear. . In order to provide comfort on the proposed long-range missions, the Me 264 featured bunk beds and a small galley complete with hot plates.
The Me 264’s first prototype was originally fitted with four Junkers Jumo inverted V12 engines using the then-new Kraftei (or “power egg”) unitized powerplant installation as standardized for the earlier Junkers Ju 88A Schnellbomber, but inadequate power from the Jumo 211 engines led to their replacement on the Me 264 V1 first prototype with four similarly unitized 1,700 hp BMW 801G engines. The first prototype, the Me 264 V1, bearing the Stammkennzeichen factory code of RE+EN, was flown on 23 December 1942. It was powered at first by four Junkers Jumo 211J inline engines of 1,340 hp each. In late 1943, these were changed to the BMW 801G radial engines which delivered 1,750 hp each.
Trials showed numerous minor faults and handling was found to be difficult. One of the drawbacks was the very high wing loading of the Me 264 in fully loaded conditions at some 356 kg/m2. Comparable aircraft, such as the Boeing B-29 Superfortress with a wing loading of 337 kg/m2, the redesigned Heinkell He 277 at 334.6 kg/m2 and the Junkers Ju 390 at 209 kg/m2 had lower wing loadings. The relatively high wing loading caused poor climb performance, loss of manoeuvrability, stability and high take-off and landing speeds. The first prototype was not fitted with weapons or armour but the following two prototypes, the Me 264 V2 and V3 had armour for the engines, crew and gun positions. The Me 264 V2 was built without defensive armament and vital equipment and the Me 264 V3 was to be armed and have the same armour.
In 1943, the Kriegsmarine withdrew their interest in the Me 264 in favour of the Ju 290 and the planned Ju 390. The Luftwaffe indicated preference for the unbuilt Focke Wulf Ta 400 and the Heinkel 277 as Amerikabomber candidates in May 1943, based on their performance estimates. Further payments for development work to Messerschmitt AG for its design were stopped. Late in 1943, the second prototype, Me 264 V2, was destroyed in a bombing attack. On 18 July 1944, the first prototype, which had entered service with Transportstaffel 5, was damaged during an Allied bombing bombing raid and was not repaired. The third prototype, which was unfinished, was destroyed during the same raid. In October 1943, further Me 264 development was stopped to concentrate on the development and production of the Messerschmitt Me 262 turbojet fighter-bomber.
Following the cancellation of the competing He 277 in April 1944, on 23 September 1944, work on the Me 264 project was officially cancelled. Messerschmitt proposed a six-engine version of the Me 264, the Me 264/6m (or alternately Me 364), but it was never built (Ref.: 24).

Dornier Do 217K-1 with Ruhrstahl Fritz X (Italeri Models), (Fritz X scratch built))

TYPE: Long-range carrier aircraft for missiles

ACCOMMODATION: Crew of four

POWER PLANT: Two BMW 801L radial engines, rated at 1,560 hp each

PERFORMANCE: 324 mph in 17.100 ft

COMMENT: The Dornier Do 217 was a bomber used by the German Luftwaffe during World War II as a more powerful development of the Dornier Do 17, known as the Fliegender Bleistift (German: “flying pencil”). Designed in 1937 and 1938 as a heavy bomber but not meant to be capable of the longer-range missions envisioned for the larger Heinkel He 177 Greif (Griffon), the Do 217’s design was refined during 1939 and production began in late 1940. It entered service in early 1941 and by the beginning of 1942 was available in significant numbers.
The Dornier Do 217 had a much larger bomb load capacity and had much greater range than the Do 17. In later variants, dive bombing and maritime strike capabilities using glide bombs were experimented with considerable success being achieved. Early Do 217 variants were more powerful than the contemporary Heinkel He 111 and Junkers Ju 88, having a greater speed, range and bomb load. The Do 217 served on all fronts in all role as a strategic bomber, torpedo bomber and reconnaissance aircraft. It also performed tactical operations, either direct ground assault or anti-shipping strikes. The Do 217 was also converted to become a night fighter and saw considerable action in the Defence oft he Reich campaign until late in the war.
In 1943, the Do 217 was the first aircraft to deploy precision-guided munition (PGM) in combat, when Ruhrstahl Fritz X radio-guided bombs sank the Italian battleship Roma in the Mediterranean.
To replace the Do 217E, the RLM planned for the He 177A-3 and A-5 to be the long-range carrier aircraft for missiles, owing to the lack of BMW engines to power the Dornier but problems with the engine reliability of the He 177A led to the failure of the plan.
In early 1942, tests on a new and improved, completely glazed cockpit for the Do 217K series had been underway at the Hamburger Schiffbauanstalt (Hamburg Shipbuilding Institute). Do 217E-2s were fitted with a new streamlined “stepless cockpit” following its conceptual debut in January 1938 for the Heinkel He 111P, as this design philosophy became the standard for almost all German bombers later in World War II, which eliminated the separate windscreen panels for the pilot of earlier versions of the Do 217. The lower nose of the Do 217K-version also retained the Bola (Bodenlafette, ventral gun mounting) inverted-casemate gondola for a rearwards-aimed ventral defensive armament emplacement, with its forward end fully incorporated with the new nose glazing design. The cabin design passed the tests easily. Initial flights took place on March 1942 after teething problems had been resolved. The Do 217K V1 flew with BMW 801A-1s from Erpobungsstelle Rechlin. This was followed by the ten-airframe pre-production batch, Do 217K-01 to K-010. BMW believed that the type could reach an operational ceiling of 25.000 ft, notwithstanding an A.U.W of 16.8 t. Tests at Peenemünde in June and July 1943 showed that while the Do 217K could carry and deploy a Ruhrstahl Fritz-X precision guided munition, it was still controllable.
The Do 217K-1 was a bomber version and was powered by two BMW 801L engines with GM 1 nitrous oxide boost. This increased the Do 217K-1s maximum speed by 53 mph at 26.250ft at a rate of 100 g/s. With 50 g/s the aircraft’s operational ceiling could be extended from 27.560 ft to 32.152ft.
In total 220 Do 217K-1 were built followed by Do 217K-2 with extended wings (Ref.:24)

Dornier Do 635 (Dragon Models, Parts scratch-built

TYPE: Long-range reconnaissance aircraft

ACCOMMODATION: Crew of two

POWER PLANT: Four Daimler-Benz DB 603E liquid-cooled engines, rated at 1,777 hp each

PERFORMANCE: 447 mph

COMMENT: The Dornier Do 635 was a WW II long-range reconnaissance aircraft of the German Luftwaffe proposed by Dornier Company, as two Dornier Do 335 fuselages joined by a common center wing section.
In 1944, designers of Dornier Flugzeugwerke proposed the RLM a long-range reconnaissance aircraft with a range of 2.480 mi under the designation Dornier Do 335Z (Z for Zwilling ; “Twin”). Similar to the Heinkel He 111Z, a combination of two Heinkel He 111 bombers joined by a common center wing section, two Dornier Do 335B fuselages were connected by a center wing section. The pilot was seated in the left fuselage, the radio operator/navigator sitting in the right fuselage. Armament was not envisaged. The RLM confirmed the design provided the range was increased to app. 3.720 mi. Further modifications changed the design from the original Do 335 into a completely new aircraft; the new RLM designation was now Dornier Do 635. Four prototypes were ordered and begin of production was planned for June 1945.
On order of the RLM and representatives of the Luftwaffe the cooperation with Dornier was cancelled and all further development was transferred to Heinkel Flugzeugwerke.
Reason might be that Heinkel’s team had much experience with the Heinkel He 111Z and its twin fuselage combination.  The designation of the project was internally changed to Heinkel He P.1070, officially Heinkel He 535 (or He 635, depending on literature). Again, profound changes were required. In order to increase range three external fuel tanks under the outer and center wings were provided, the wing span was reduced and the fuselage length was increased.
All these changes did not satisfy the RLM, so the design was revised again. The crew compartment was now solely positioned in the left fuselage and enlarged to seat three crew members: pilot, copilot and observer/navigator. Wing span was increased again, the center wing section was shortened to bring both fuselages closer together and the inner tail planes were provided as a common sector.
Meanwhile, a lot of time was wasted due to permanent changes in the requirements of the design. Finally, all further development was transferred to Junkers Flugzeugwerke. Prof. Hertel and his team refined the design once again, now under the designation Junkers Ju 635. The aim was to simplify the aircraft for easier production and an increase of range to app. 7.200 mi.
As its predecessor the Junkers design used two modified Dornier Do 335 fuselages, joined by a center wing section of constant chord, the outer wing panels were tapered back. Four Daimler-Benz DB 603E-1 engines supplied the power, one in each forward fuselage pulling and two in each rear fuselage driving a pusher propeller via a long drive shaft. Fuel was carried in ten internal wing tanks, four in the fuselages and possibly one in each fuselage bay. The port fuselage bay carried two Rb 50/30 cameras and the starboard bay contained five 60 kg marker bombs. A crew of three was envisioned, although this could be increased to four eventually. The pilot and the radio operator sat in the port fuselage and a second pilot sat in the starboard fuselage. The fourth crew member (navigator) was also to sit in the starboard fuselage. The landing gear was to consist  of two nose wheels under each fuselage nose, two main wheels which were fitted with mud guards to protect the rear radiator intakes, and a jettisonable fifth wheel located beneath the center wing, which was fitted with a parachute for recovery. The main wheels were modified from the Junkers Ju 352 transports wheels. Two Walter HWK 109-500 RATO (Rocket Assisted Take Off) units could be fitted to assist take off. No armament was included due to the fact that this was a long-range reconnaissance aircraft and thus all weight was reserved for fuel and speed.
Four prototypes and six preproduction aircraft were orderd, the first example planned to take-off on February 1945. By early 1945, wind-tunnel models had been tested and cockpit mockups had been constructed. But by February 1945 due to the worsening war situation all further work on the Junkers Ju 635 was stopped.
The model shown here is the first design of the Dornier Do 635 (Ref.: 17, 24).

Junkers Ju 488 V401 (Kora Models, Resin)

TYPE: Heavy strategic bomber

ACCOMMODATION: Crew of three

POWER PLANT: Four BMW 801TJ or BMW 802 radial engines, rated at 2,500 hp each

PERFORMANCE: 429 mph at 23,620 ft

COMMENT: The Junkers Ju 488 was Germany’s last real attempt to create a four-engined, long range bomber. In early 1944, Junkers design department at Dessau made a proposal to simply and quickly produce a heavy bomber, using a minimum of new building jigs or parts. Basically, the Ju 488 was to be constructed out of existing Junkers aircraft. The Ju 388K was to supply the pressurized crew cabin, the Ju 188E supplied the rear fuselage, the ventral pannier was to come from the Ju 88A-15 and Ju 388K series, outer wing sections from the Ju 388K and finally the entire twin fin tail section from the Ju 288C. Added to this collection were a new center fuselage section and a parallel wing center section, to carry the four engines.
The Ju 488 V401 and V402 were to be entirely of metal construction, with the exception of the ventral pannier, which was constructed of wood. The fuselage had an internal bomb bay and five fuel tanks located behind the fuselage and above the bomb bay. The mid-fuselage mounted wing was tapered on the outer wing panels and featured a two spar, all metal construction, with a total of eight fuel tanks within the wing. Four BMW 801TJ 14 cylinder radial engines (driving four bladed propellers) were mounted in individual nacelles, with each nacelle containing a single main landing gear leg, which retracted to the rear. One interesting design workaround was that the outer engines had to be mounted lower on the wing, because the wing dihedral would have left the landing gear a little short from reaching the ground. No defensive armament was to be fitted to either the V401 or V402.
Proceeding in parallel with the first two 488 prototypes’ construction, a new, larger aircraft was being designed. This was to be the production model Junkers Ju 488A, and four prototypes (V403-406) were ordered. This new version deleted the wooden ventral pannier and the wing was moved further to the rear. The BMW 801TJs were to be replaced by four Jumo 222A-3 or B-3 liquid cooled 24 cylinder four row radial engines. Perhaps the biggest change was the lengthened fuselage, which was to use a welded steel tube construction with a sheet metal covering towards the front portion of the aircraft, and a fabric covering for the rear. An extra fuel tank could now be carried within the fuselage, for a maximum total of 15.066 liters (3.980 gallons). Defensive armament consisted of a remote controlled tail barbette with two MG 131 13 mm machine guns and a single remote controlled dorsal turret with two MG 151 20 mm cannon, both controlled from the pressurized cockpit via a periscope.
Work was begun on the Junkers Ju 488 V401 and V402 prototypes in the former Latécoère factory at Toulouse in early 1944. The plan was for the fuselage and the new wing center section to be built in Toulouse, all other components would come from the Junkers Dessau and Bernburg factories. It was hoped to have the Ju 488 in operational service by mid-1945. Construction was well advanced when the decision was made in July of 1944 to move the existing work done to date to Bernburg by train, due to the rapidly advancing Allied invasion forces. On the night of July 1944, resistance fighters succeeded in destroying the Ju 488 V401 fuselage and center wing section to the extent they could not be salvaged. After the last of the German forces evacuated the city in late August 1944, the V402 forward fuselage section was found covered and abandoned on a railway siding. No record seems to exist as to the final disposition of this last remaining Ju 488 piece. The entire Ju 488 program was discontinued in November 1944, when it was realized that a new large bomber aircraft was not needed at this stage in the war. An attempt was made to offer the Ju 488 design to the Japanese, but they were not interested (Ref.: 17).

Heinkel He 177A-5/R2 “Greif” (“Griffin”) with Ruhrstahl Fritz X, 4./KG 100, (Revell)

TYPE: Heavy long-range bomber

ACCOMMODATION: Crew of 6

POWER PLANT: Two Daimler- Benz DB 610 “power systems”, each one created from a twinned-pair of Daimler-Benz DB 610A-1/B-1 liquid-cooled engines, rated at 2,950 hp each

PERFORMANCE: 303 mph at 19,685 ft

COMMENT: The Heinkel He 177 “Greif” (“Griffin”) was a long-range heavy bomber flown by the German Luftwaffe during World War II. The He 177 was the only operational long-range heavy bomber available to the Luftwaffe during the war years that had a payload/range capability similar to the four-engined heavy bombers flown by the USAAF and RAF in the European theatre; it had higher cruising and maximum speeds.
Designed to a 1936 requirement known as “Bomber A”, the aircraft was originally intended to be a purely strategic bomber intended to support a long-term bombing campaign against Soviet industry in the Urals. In spite of its large wingspan, the design was limited to two engines. During the design, Luftwaffe doctrine came to stress the use of moderate-angle dive-bombing, or “glide bombing”, to improve accuracy. Applying the changes needed for this type of attack to such a large aircraft was unrealistic.
To deliver the power required from only two engines on an aircraft this large, engines of at least 2,000 hp were needed. Such designs were not well established and the Daimler-Benz DB 606 “power system”, combined with the cooling and maintenance problems caused by the tight nacelles, caused the engines to be infamous for catching fire in flight. Early models gained the nicknames  Reichsfeuerzeug“ (“Reich’s lighter”) from Luftwaffe aircrew.
On 9 November 1939, the first prototype, the He 177 V1, was flown. Further seven prototypes were completed until 1942, followed by 35 pre-production He 177 A-0s and 130 He 177 A-1s. The early aircraft in this batch were used for further trials, and after a brief and unhappy operational debut the remainder were withdrawn from service. From late 1942 they were replaced by He 177 A-3s. Starting in August 1943, all He 177’s delivered had an extended rear to both instill greater stability for bombing and to offset the slightly lengthened engine nacelles. Most of the short-fuselage A-3s were rebuilt to the longer standard . From November 1942 to June 1944 612 He 177A-3 were built resp. converted (from short fuselage to long fuselage). These were followed by 350 He 177A-5.
The type matured into a usable design but was too late in the war to play an important role. It was built and used in some numbers, especially on the Eastern Front where its range and cruising altitudes in excess of 19,690 ft was particularly useful. So, losses were relatively light. The Soviet Air Force, equipped mainly for low-level interception and ground-attack roles, could do little to hinder the high-flying bombers. In contrast the He 177 saw considerably less use on the Western Front late in 1944.
As the war progressed, He 177 operations became increasingly ineffective. Fuel and personnel shortages presented difficulties, and He 177s were sitting on airfields all over Europe awaiting new engines or engine-related modifications. Constant attacks of the Allied against Luftwaffe long-range combat units in France made continuous operations difficult.
In common with most piston-engined German bombers, the He 177 was grounded from the summer of 1944 due to the implementation of the Emergency Fighter Program (Jäger Notprogramm). Until November 1944, 1,153 He 177 in several subtypes were built by Arado and Heinkel.
One Heinkel He 177A-0, one A-3, and two A-5 were rebuilt as Heinkel He 177 B  prototypes from December 1943 to July 1944. From the beginning these aircraft were designed as a four-engined development with four Daimler-Benz DB 603 in separate nacelles instead  of the “coupled engine” powered He 177 A-series. Further plans show that these engine arrangements were postulated for the successor, the Heinkel He 277.
The Heinkel He 177 A-5/R2, shown here, belongs to the 4./KG 100, stationed at Chateaudun, France. This version was optimized for Ruhrstahl Fritz X and Henschel Hs 293 guided bombs and equipped with FuG 203 Kehl-Straßburg control gear.

RUHRSTAHL FRITZ X

Ruhrstahl Fritz X was the most common name for a German guided anti-ship glide bomb used during WWII. Fritz X was the world’s first precision guided weapon deployed in combat and the first to sink a ship in combat. Fritz X was a nickname used both by Allied and German Luftwaffe personnel. Alternative names include Ruhrstahl SD 1400 X, Kramer X-1, PC 1400X or FX 1400 (the latter, along with the unguided PC 1400 Fritz nickname, is the origin for the name “Fritz X”.
Fritz X was a further development of the PC 1400 (Panzersprengbombe, Cylindrisch 1,400 kg) armour-piercing high-explosive bomb, itself bearing the nickname Fritz. It was a penetration weapon intended to be used against armored targets such as heavy cruisers and battleships. It was given a more aerodynamic nose, four stub wings, and a box shaped tail unit consisting of a roughly 12-sided annular set of fixed surfaces and a cruciform tail with thick surfaces within the annulus, which contained the Fritz Xs aerodynamic controls.
The Luftwaffe recognized the difficulty of hitting moving ships during the Spanish Civil War. Dipl. engineer Max Kramer, who worked at the Deutsche Versuchsanstalt für Luftfahrt (DVL) had been experimenting since 1938 with remote-controlled free-falling 250 kg bombs and in 1939 fitted radio-controlled spoilers. In 1940, Ruhrstahl AG was invited to join the development, since they already had experience in the development and production of unguided bombs.
Fritz X was guided by a FuG 203 Kehl-Straßburg radio control link, which sent signals to the movable spoilers in the thick vertical and horizontal tail fin surfaces, within the annular tail fin structure. This control system was also used for the unarmored, rocket-boosted Henschel Hs 293 anti-ship ordnance, itself first deployed on 25 August 1943. The Kehl-Straßburg receiver antenna installations on the Fritz X were aerodynamically integrated into the trailing edge of the annular surfaces of the tail fin, non-metallically encapsulated within a quartet of “bulged” sections in the trailing edge. This design feature of the FuG 230 Kehl-Straßburg receiver installation is not entirely unlike the Azon (Azimuth only ) US contemporary guided bomb, which had its own receiving antennas placed in the quartet of diagonal struts bracing the fixed sections of its tail fins.
Minimum launch height was 13,000 ft – although 18,000 ft was preferred – and a range of 5 km was necessary. As it was an MCLOS (manual command to line of sight)-guidance ordnance design, the operator had to keep the bomb in sight at all times (a tail flare was provided, as with the Azon, to assist the operator in tracking the weapon) and the control aircraft had to hold course, which made evading gunfire or fighters impossible. Approximately 1,400 examples, including trial models, were produced (Ref.: 24).

Arado Ar 234C-2 with Fieseler Fi 103 (V-1), (Dragon Models)

ARADO Ar 234C-2 BLITZ

TYPE: Turbojet driven bomber, Mistel (Mistletoe) component
ACCOMMODATION: Pilot only
POWER PLANT: Four BMW 003A-2 turbojet engines, rated at 800 kp thrust each
PERFORMANCE: 460 mph at 20,000 ft
COMMENT: The Arado Ar 234 Blitz (Lightning) was the world’s first operational turbojet-powered bomber, built by the German Arado company during World War II.
Produced in limited numbers it was used almost entirely for aerial reconnaissance. In its few uses as a bomber it proved to be nearly impossible to intercept. It was the last German Luftwaffe aircraft to fly over the UK during the war, in April 1945
The Ar 234 was built in various versions: Ar 234A with two turbojet engines, Ar 234B with two turbojet engines or for engines in separat nacelles and Ar 234C with four engines mounted in a  pair of twin-engine nacelles and a purely rocket-engine-driven Ar 234R. Of each of these various versions sub-types were built or planned.
The Arado Ar 234C was equipped with four lighter weight BMW 003A turbojet engines mounted in a pair of twin-engine nacelles based on basis of the eighth prototype. The primary reason for changing the engienes was to free up the Junkers Jumo 004 turbojets for use by the Messerschmitt Me 262, but the change improved overall thrust to nearly 3.2 tonnes with all four BMW turbojets at full take-off power, especially useful for take-off and climb-to-altitude performance. An improved cockpit design, with a slightly bulged outline for the upper contour integrating a swept-back fairing for the periscope, used a simplified window design with fewer glazed panels for ease of production. The four BMW jet engines gave about 20% greater airspeed than the Ar 234B series airframes, and the faster climb to altitude meant more efficient flight and increased range.
Although an operational test squadron was being prepared, only 14 C-series airframes had been completed by the end of the war, of which fewer than half had engines. Some were found at the end of the war sitting in the open, complete but for empty engine nacelles.Comprehensive flight testing of the new sub-type had yet to begin when Germany surrendered. Three basic variants of the C-series were planned for initial construction, with several more laid out as detailed proposals. Some of these would have had a pair of the higher thrust, but heavier Heinkel/Hirth HeS 011turbojet engines, while others were intended to feature swept or “crescent”-type wings.
There were plans, not put into practice, to use the Arado 234C turbojet bomber to launch V-1s either by towing them aloft or by launching them from a “piggy back” position (in the manner of the Mistel (Mistletoe), but in reverse) atop the aircraft. In the latter configuration, a pilot-controlled, hydraulically operated dorsal trapeze mechanism would elevate the missile on the trapeze’s launch cradle about 2.4 m clear of the Ar 234’s upper fuselage. This was necessary to avoid damaging the mother craft’s fuselage and tail surfaces when the pulsejet ignited, as well as to ensure a “clean” airflow for the Argus motor’s intake.

FIESELER Fi 103 V-1 FLYING BOMB

TYPE: Unmanned Flying bomb
ACCOMMODATION
: None
POWER PLANT
: One Argus As 109-014 pulsejet, rated at 330 kp thrust
PERFORMANCE: 400 mph at 3000 ft
COMMENT:
The V-1 flying bomb (Vergeltungswaffe 1, Vengeance Weapon 1) was an early cruise missle and the only production aircraft to use a pulsejet for power. Its official RLM (Reichsluftwsffenministerium, Reich Aviation ministry) designation was Fi 103 was also known to the Allies as the buzz bomb or doodlebug and in Germany as Kirschkern (cherry stone) or Maikäfer (maybug).The V-1 was deployed for the terror bombing of London. It was developed at Peenemünde Army Research Center in 1939 by the German Luftwaffe at the beginning of the WW II. Because of its limited range, the thousands of V-1 missiles launched into England were fired from launch favilities along the French and Dutch coasts.
The V-1 was designed with a fuselage constructed mainly of welded sheet steel and wings built of plywood. The simple Schmidt/Argus-built pulsejet engine pulsed 50 times per second, and the characteristic buzzing sound gave rise to the colloquial names buzz bomb” or doodlebug.
The Argus pulsejet‘s major components included the nacelle, fuel jets, flap valve grid, mixing chamber Venturi, tail pipe and spark plug. Compressed air forced gasoline from the 640 l fuel tank through the fuel jets, consisting of three banks of atomizers with three nozzles each. Argus’ pressurized fuel system negated the need for a fuel pump.  These nine atomizing nozzles were in front of the air inlet valve system where it mixed with air before entering the chamber. A throttle valve, connected to altitude and ram pressure instruments, controlled fuel flow. Schmidt’s spring-controlled flap valve system provided an efficient straight path for incoming air. The flaps momentarily closed after each explosion, the resultant gas compressed in the Venturi chamber, and its tapered portion accelerated the exhaust gases creating thrust. The operation proceeded at a rate of 42 cycles per second. The engine made its first flight aboard a Gotha Go 145 biplane on 30 April 1941.
The V-1 guidance system used a simple autopilot developed to regulate altitude and airspeed. A pair of gyroscopes controlled yaw and pitch, while azimuth was maintained by a magnetic compass. Altitude was maintained by a barometric device.Two spherical tanks contained compressed air  that drove the gyros, operated the pneumatic servo-motors controlling the rudder and elevator, and pressurized the fuel system. The warhead consisted of 850 kg of Amatol, 52A+ high-grade blast-effective explosive with three fuses. An electrical fuse could be triggered by nose or belly impact. Another fuse was a slow-acting mechanical fuse allowing deeper penetration into the ground, regardless of the altitude. The third fuse was a delayed action fuse, set to go off two hours after launch.
Almost 30,000 V-1s were built; by March 1944, they were each produced in 350 hours (including 120 for the autopilot), at a cost of just 4% of a V-2, which delivered a comparable payload. Approximately 10,000 were fired at England; 2,419 reached London (Ref.: 7, 24).

Dornier Do P…. “Kleinstjäger”, (Miniature Fighter”), (Unicraft Models, Resin)

TYPE: Fighter, Interceptor

ACCOMMODATION: Only Pilot in prone position

POWER PLANT: One BMW 003 A-1 turbojet engine, rated at 800 kp thrust

PERFORMANCE: No data available

COMMENT: During November 1944, the RLM issued a requirement for the simplest possible type of fighter which could be more rapidly produced than the Heinkel He 162 Salamander (“Volksjäger”), (People-fighter) then being built. The design was not, however, to be a semi-expendable weapon in the manner of the Bachem Ba 349 Natter, because conventional landings and take-offs were to be made. Much had already been done in the Volksjäger competition to simplify airframes, so attention now turned towards simplifying the power unit, though without losing too much in the way of performance. Thus, the power unit was to be a simple pulse-jet as produced by Argus for the Fieseler Fi 103 V 1) flying bomb, a turbojet engine  or a liquid-fuelled rocket. The Kleinstjäger or Miniaturjäger was to employ the minimum of strategic materials, dispense with refinements such and electronic equipment and, by virtue of quick production, increase the chances of intercepting the enemy by flying in large numbers.
The problem of supplying all the new pilots was common to both Miniatur- and Volksjäger programmes whichever was adopted. Only three firms, which also participated in the Volksjäger competition, put forward Miniaturjäger projects, Blohm und Voss, Heinkel and Junkers.
There is also some evidence that the Dornier Company was working on a design for a Miniaturjäger. In literature a three-view thumbnail sketch of a design is known, the in-house project designation is given as Do P…. The little aircraft was to be powered by a BMW 003 turbojet engine. A high-mounted wing with light swept leading edge was envisaged, the air intake was located in the nose with the pilots seat in prone position above it. The turbojet engine was located at the fuselages end, the conventional tail plane was mounted on a boom protruding from the fuselages end. For take-off probably a trolley was used, the landing was provided by means of a retractable skid. No further facts or details are reported. (Ref.: 22 and

J. R. Smith, Antony L. Kay: German Aircraft of the Second World War. Putnam & Company, London, 1972)

Horten XIIIb (Ho X), (Sharkit Models, Resin)

TYPE: Supersonic fighter, project

ACCOMMODATION: Pilot and Navigator/radar-operator

POWER PLANT: One BMW 003R combined turbojet, rated at 1.000 kp thrust and one BMW 109-718 liquid fuel rocket, rated at 410 kp thrust

PERFORMANCE: 1.118 mph (estimated)

COMMENT: By 1943, the Hortens were discussing the possibility of supersonic flight. While this remained unchartered territory, the decided to experiment with a highly swept glider that would provide an understanding of slow speed handling with a highly swept configuration that might be capable of reaching or exceeding Mach 1.
The glider was designed as Horten Ho XIIIa and construction is believed to have begun in early 1944. The aircraft used wings from the Horten Ho III attached to a new central section which provided a span of 40 ft and a sweep of 60 degrees. The design was very clean with few protrusions apart from a dorsal spoiler and there were no vertical control surfaces. The pilot was housed in a gondola arrangement, mounted below the center section, with access via a tail cone cover. In an emergency, the pilot would jettison his cover and slide out the back of the unit.
The first test flight took place at Göttingen Airfield on 27 November 1944 and further 19 flights were conducted at Homberg by test pilot Hermann Strebel who reported that the glider handled well although he complained about poor roll control, limited forward visibility and landing problems caused by the extended skid.
Nevertheless, the Hortens were contemplating the construction of a more advanced prototype that would be powered by an Argus As10 piston engine in a pusher configuration. But this never came about ans at the end of the war a group of Russian soldiers who had just been liberated from a prison camp discovered the Ho XIIIa and destroyed it.  Furthermore, all the plans and research material for this project vanished without a trace. It now appears that the Ho XIIIb was the anticipated final development of this program and it was expected to have a supersonic performance under certain conditions. Looking very much like an advanced Lippisch design, this fighter would have been about the same size as the HoXIIIa with the same 60 degrees wing sweep. But unlike the glider there would have been a substantial upright fin containing the cockpit in very similar fashion to the proposed supersonic Lippisch P. 13a.
This similarity has often been remarked on although Reimar Horten denied any knowledge of Lippisch’s work during this time in post-war London. However, this seems highly unlikely and there was almost certainly wartime contact between the Hortens and Lippisch. The supersonic Ho XIIIb would have been powered by mixed propulsion system. This could have been either a BMW 003R combined turbojet linked to a BMW 718 rocket engine or a Heinkel/Hirth HeS 011 turbojet and a supplementary Walter rocket engine.
Presumably, a two seater version of the supersonic Horten Ho XIIIb was on the drawing board when in 1945 the “Third Reich” collapsed.

Bill Rose: Secret projects. Flying wings and Tailless Aircraft, Midland Press, Reprint of Ian Allan Publishing Ltd., Hersham, Surrey KTI24RG, 2010.

Focke-Wulf Fw 031 0239/01 (3 x 1000 Bomber Project A), (Unicraft Models, Resin)

TYPE: Fast medium bomber

ACCOMMODATION: Pilot only

POWER PLANT: Two Heinkel-Hirth HeS 011 turbojet engines, rated at 1,300 kp each

PERFORMANCE: 621 mph at 13,000 ft

COMMENT:  In 1944, Focke-Wulf created three designs of a bomber using two Heinkel-Hirth He S 011 turbojets. These bombers were known under the name of the 1000x1000x1000 Bomber-Projekt and were under the direction of Dipl.-Ing. H. von Halem and D. Küchemann. The designation meant that the aircraft could carry a 1000 kg (2205 lbs) bomb load 1000 km (621 miles) and fly at 1000 km/h (621 mph).
The first design under Focke-Wulf’s design number 031 0239/01 (Projekt A) was for a fairly conventional layout. The fuselage was long and tapered aft of the wing leading edge. Fuel was carried in several tanks located within the fuselage. The wings were thin and swept back at 35 degrees . Two Heinkel-Hirth He S 011 turbojet engines each developing 1300 kg of thrust were slung beneath the wings. Although the engines would cause more drag in this location, maintenance accessibility would be improved and a shorter design time would be achieved. The tail planes were also swept back; this along with the wing sweep and the fuselage thinning aft of the wing leading edge would help achieve the Mach number of .90.  The main gear are mounted just inboard of the jet nacelles and retracted in and forward; the nose gear was beneath the cockpit and retracted to the rear.  A single pilot sat in a cockpit located in the nose and afforded fairly good visibility. No armament was planned at this stage, and the bomb load of 1000 kg was carried in an internal bomb bay.
The second design under the Focke-Wulf  internal designation Fw P.031 0239/10 “3×1000 Bomber, Projekt B” was of a flying wing layout.
The third design  (Projekt C) again was of conventional layout similar to the first design (Projekt A
Since these designs would have taken several years to complete, the end of the war ended all development.

(Ref.: Herwig, Dieter and Heinz Rode: Luftwaffe Secret Projects, Ground Attack & Special Purpose Aircraft. Midland Publishing, Hinckley, LE10 3EY, England),