Category Archives: Fighter

Fighter

Messerschmitt Me 509 (RS Models)

TYPE: Fighter, Fighter bomber, Project

ACCOMMODATION: Pilot only

POWER PLANT: One Daimler-Benz DB 605B liquid-cooled engine, rated at 1,455 hp

PERFORMANCE: 470 mph (estimated)

COMMENT:  Although the Me 509 can trace its roots back to the Messerschmitt Me 309, very little information has survived. The aircraft was to be of an all-metal construction. A new fuselage was designed, with the pressurized cockpit being moved well forward near the nose.  The Daimler Benz 605B 12-cylinder engine was buried in the fuselage behind the cockpit, and drove a three-bladed, Me P 6 reversible-pitch propeller by an extension shaft which passed beneath the cockpit (similar to the US Bell P-39 Airacobra).  The wing was tapered and had rounded wingtips, and was mounted low on the fuselage.  Other Me 309 components were to be used, such as the tricycle landing gear, and the vertical tail assembly was similar to the one used for the Me 309 V1.  Armament was not decided upon for the 509, but it is thought that two MG 131 13mm machine guns and two MG 151 20mm cannon were to be used. Although there were advantages of better cockpit visibility and relocation of the engine weight from the nose gear. That was important, since the Me 309’s nose gear often collapsed. The Messerschmitt Me 509 design and development was stopped when the Me 309 program was ended in mid-1943.
In April 1945, the Japanese completed a very similar project, the Yokosuka R2Y Keiun. Although no firm evidence exists, it is possible that the Messerschmitt Me 309/509 information was licensed to the Japanese military, as were a number of other German designs (Messerschmitt Bf 109, Heinkel He 100, Messerschmitt Me 163, Messerschmitt Me 410, among others). (Ref.: 17).

Arado Ar 240A-2, JG 5 Eismeergeschwader, (Revell Models)

TYPE: Heavy fighter

ACCOMMODATION: Crew ot two

POWER PLANT: Two Daimler-Benz DB 601E liquid-cooled  engines, rated at 1,175 hp each

PERFORMANCE: 385 mph

COMMENT: The Arado Ar 240 was a German twin-engine, multi-role heavy fighter aircraft, developed for the Luftwaffe during WW II by Ardo Flugzeugwerke. Its first flight was in 1940, but problems with the design hampered development, and it remained only marginally stable throughout the prototype phase. The project was eventually cancelled, with the existing airframes used for a variety of test purposes.
The Ar 240 came about as the response to a 1938 request for a much more capable second-generation heavy fighter to replace the Messerschmitt Bf 110, which was becoming outdated. Both Arado and Messerschmitt responded. Messerschmitt’s response, the Me 210, was a totally new design, but thanks to Messerschmitt’s experience with the Zerstörer (“Destroyer”) concept, it would be able to enter service quickly. Arado’s design was considerably more ambitious for the smaller firm, a dream project of Arado’s chief designer, Walter Blume, since the mid-1930s. While it would take some time before deliveries of the Arado design could begin, the Reichsluftfahrtministerium (RLM, German Aviation Ministry was nevertheless interested enough to order prototypes of both designs.
Prior to this point, Arado had invested heavily in several lines of basic research. One was the development of the “Arado travelling flap” which offered excellent low-speed lift performance. Another was ongoing work in the design and construction of pressurized cockpits, which dramatically lowered pilot fatigue for any flight above about 14,760 ft. Finally, they had also invested in a technically advanced remote-control defensive gun system, which they had been experimenting with for several years. The system used a gunsight located in the rear cockpit, operated by the navigator/gunner, which had optics on both the top and bottom of the aircraft, allowing aim in any direction. The gunsight was hydraulically connected to well-streamlined pancake-shaped, remotely-operated turrets on the top and bottom of the aircraft. For the Ar 240 design, the Arado engineers combined all this research into a single airframe.
For outright performance, they used as small a wing as reasonable, thereby lowering parasite drag (at the expense of greater lift-induced drag). Normally this would make the plane have “impossibly high” landing speeds, but this was offset by the use of a huge travelling flap and leading edge slats for high low-speed lift. When the flaps were extended, the upper portion of the ailerons would remain in place while the lower portion extended rearward, essentially increasing the wing area. A Jumo 222-powered Junkers Ju 288 prototype with ducted spinners, of a similar type to that intended for the Ar 240.
The Daimler-Benz DB 601 inline engines were conventionally installed and equipped with three-blade, fully adjustable propellers. The radiators were somewhat unusual however, quite similar to those fitted to the Junkers Ju 88 which pioneered them – but much more closely resembling the intended installation of the radiators intended for the junkers Ju 288, when powered by its intended multibank Junkers Jumo 222 liquid-cooled 24-cylinder engines – for both types, consisting of an annular block located in front of each engine, but with the Ar 240 partially covering each of them with an oversized, ducted flow-through propeller spinner forward of each radiator unit, with air entering through a large hole in the front of the spinner and exiting out of the cowl flaps, as the Jumo 222-powered Ju 288 design was intended to have. As with the Jumo inline-powered versions of the Ju 88, this made the plane look as if it were mounting a radial engine, and the Ar 240, like later Jumo inline-powered fighter aircraft from the Focke-Wulf firm (the Fw 190D, Ta 152 and twin-engined Ta 154) also benefitted from the simpler setup of an annular radiator just forward of the engine.
The fuel cells in the wings were provided with a newly developed self-sealing system that used thinner tank liners, allowing for more fuel storage. The liners could not be easily removed as they stuck to the outer surface of the tank, so in order to service them, the wing panelling had to be removable. This led to a complex system for providing skinning stiff enough to be handled in the field, complicating construction and driving up weight.
As with all German multi-use aircraft designs of the era, the aircraft was required to be a credible dive bomber. The thick wing panelling was not suitable for piercing for conventional dive brakes, so a “petal”-type brake was installed at the extreme rear of the fuselage — appearing much like what had been trialled with the Dornier Do 217 — which, unlike the Do 217’s vertically-opening “petals”, opened to the sides instead when activated. When closed the brake looked like a stinger, extending beyond the horizontal stabilizer and twin fins.
Finally, the cockpit was fully pressurized. This would not have been easy if the armament had to be hand-operated by the gunner, as it would have required the guns to penetrate the rear of the cockpit canopy. However, the remote control system allowed them to be located in turrets in the unpressurized rear of the fuselage.
All of this added weight, and combined with the small wing, led to a very highwing loding of 330 kg/m2, compared to an average of about a 100 for a single-seat fighter.
Technical specifications were first published in October 1938, followed by detailed plans later that year. In May 1939, the RLM ordered a batch of six prototypes. The first Ar 240 V1 prototype took to the air on 25 June 1940, and immediately proved to have poor handling in all axes, also tending to overheat during taxiing.
The handling was thought to be the result of the ailerons being too small, given the thick wing, so the second prototype was modified to have larger ones, as well as additional vertical fin area on the dive brakes to reduce yaw. In addition, small radiators were added to the landing gear legs to improve cooling at low speeds, when the gear would normally be opened. Ar 240 V2, first flew on 6 April 1941, and spent most of its life at the factory in an experimental role.
Ar 240 V3 followed, the first to be equipped with the FA 9 rear-firing armament system, developed jointly by Arado and DVL, armed with a 7.92 mm MG 81Z machine gun. Ar 240 V4 was the first to include an operational dive brake, and flew on 19 June 1941. Ar 240 V5 and the V6 followed in December and January, including the upgraded FA 13 system, using two 13 mm MG 131 machine gun in place of the MG 81Z for a considerable boost in firepower. Ar 240 V7 and V8 acted as prototypes for the planned Ar 240 B, which was to use two Daimler Benz DB 605As, while Ar 240 V9, V10, and V11, and V12 served as prototypes of the Ar 240 C.
The Ar 240’s excellent performance quickly led to the V3, V5 and V6 being stripped of their armament, including the defensive guns, and used as reconnaissance aircraft over England, where no other two-seater could venture by 1942. A number of pre-production Ar 240As served on the northern part oft he Eastern Front overflying Soviet military positions. In grand total 14 Arado Ar 240 were built (Ref.: 24).

Dornier Do P…. “Kleinstjäger”, (Miniature Fighter”), (Unicraft Models, Resin)

TYPE: Fighter, Interceptor

ACCOMMODATION: Only Pilot in prone position

POWER PLANT: One BMW 003 A-1 turbojet engine, rated at 800 kp thrust

PERFORMANCE: No data available

COMMENT: During November 1944, the RLM issued a requirement for the simplest possible type of fighter which could be more rapidly produced than the Heinkel He 162 Salamander (“Volksjäger”), (People-fighter) then being built. The design was not, however, to be a semi-expendable weapon in the manner of the Bachem Ba 349 Natter, because conventional landings and take-offs were to be made. Much had already been done in the Volksjäger competition to simplify airframes, so attention now turned towards simplifying the power unit, though without losing too much in the way of performance. Thus, the power unit was to be a simple pulse-jet as produced by Argus for the Fieseler Fi 103 V 1) flying bomb, a turbojet engine  or a liquid-fuelled rocket. The Kleinstjäger or Miniaturjäger was to employ the minimum of strategic materials, dispense with refinements such and electronic equipment and, by virtue of quick production, increase the chances of intercepting the enemy by flying in large numbers.
The problem of supplying all the new pilots was common to both Miniatur- and Volksjäger programmes whichever was adopted. Only three firms, which also participated in the Volksjäger competition, put forward Miniaturjäger projects, Blohm und Voss, Heinkel and Junkers.
There is also some evidence that the Dornier Company was working on a design for a Miniaturjäger. In literature a three-view thumbnail sketch of a design is known, the in-house project designation is given as Do P…. The little aircraft was to be powered by a BMW 003 turbojet engine. A high-mounted wing with light swept leading edge was envisaged, the air intake was located in the nose with the pilots seat in prone position above it. The turbojet engine was located at the fuselages end, the conventional tail plane was mounted on a boom protruding from the fuselages end. For take-off probably a trolley was used, the landing was provided by means of a retractable skid. No further facts or details are reported. (Ref.: 22 and

J. R. Smith, Antony L. Kay: German Aircraft of the Second World War. Putnam & Company, London, 1972)

Horten XIIIb (Ho X), (Sharkit Models, Resin)

TYPE: Supersonic fighter, project

ACCOMMODATION: Pilot and Navigator/radar-operator

POWER PLANT: One BMW 003R combined turbojet, rated at 1.000 kp thrust and one BMW 109-718 liquid fuel rocket, rated at 410 kp thrust

PERFORMANCE: 1.118 mph (estimated)

COMMENT: By 1943, the Hortens were discussing the possibility of supersonic flight. While this remained unchartered territory, the decided to experiment with a highly swept glider that would provide an understanding of slow speed handling with a highly swept configuration that might be capable of reaching or exceeding Mach 1.
The glider was designed as Horten Ho XIIIa and construction is believed to have begun in early 1944. The aircraft used wings from the Horten Ho III attached to a new central section which provided a span of 40 ft and a sweep of 60 degrees. The design was very clean with few protrusions apart from a dorsal spoiler and there were no vertical control surfaces. The pilot was housed in a gondola arrangement, mounted below the center section, with access via a tail cone cover. In an emergency, the pilot would jettison his cover and slide out the back of the unit.
The first test flight took place at Göttingen Airfield on 27 November 1944 and further 19 flights were conducted at Homberg by test pilot Hermann Strebel who reported that the glider handled well although he complained about poor roll control, limited forward visibility and landing problems caused by the extended skid.
Nevertheless, the Hortens were contemplating the construction of a more advanced prototype that would be powered by an Argus As10 piston engine in a pusher configuration. But this never came about ans at the end of the war a group of Russian soldiers who had just been liberated from a prison camp discovered the Ho XIIIa and destroyed it.  Furthermore, all the plans and research material for this project vanished without a trace. It now appears that the Ho XIIIb was the anticipated final development of this program and it was expected to have a supersonic performance under certain conditions. Looking very much like an advanced Lippisch design, this fighter would have been about the same size as the HoXIIIa with the same 60 degrees wing sweep. But unlike the glider there would have been a substantial upright fin containing the cockpit in very similar fashion to the proposed supersonic Lippisch P. 13a.
This similarity has often been remarked on although Reimar Horten denied any knowledge of Lippisch’s work during this time in post-war London. However, this seems highly unlikely and there was almost certainly wartime contact between the Hortens and Lippisch. The supersonic Ho XIIIb would have been powered by mixed propulsion system. This could have been either a BMW 003R combined turbojet linked to a BMW 718 rocket engine or a Heinkel/Hirth HeS 011 turbojet and a supplementary Walter rocket engine.
Presumably, a two seater version of the supersonic Horten Ho XIIIb was on the drawing board when in 1945 the “Third Reich” collapsed.

Bill Rose: Secret projects. Flying wings and Tailless Aircraft, Midland Press, Reprint of Ian Allan Publishing Ltd., Hersham, Surrey KTI24RG, 2010.

Messerschmitt “Projekt Wespe I” (Project Wasp I), (Unicraft Models, Resin)

TYPE: Short-range fighter, interseptor

ACCOMMODATION: Pilot only

POWER PLANT: One turbojet engine of unknown type

PERFORMANCE: No data available

COMMENT: The end of WW II saw a great amount of  secret project documents burned, captured or left to blow around empty hangars. Some companies documents were almost completely lost, others were scattered. After the war some of these seemingly reappeared but most likely many of these projects are imaginations. Some were relatively conventional, others were futuristic, but it is unknown whether these designs are from the period 1940/41 or from the time at the end of the WW II.
This is true for instance for Messerschmitt’s “Animal Names” types. These were a single-turbojet  midget fighter “Libelle”  (Dragonfly) and two designs of the “Wespe I” and “Wespe II” (Wasp) light fighters, a twin-engine fighter Messerschmitt Schwalbe (Swallow),  a bomber-transporter “Wildgans” (Brant) and two versions of a heavy ground-attacker “Zerstörer I” and “Zerstörer II” (Destroyer).
Both Messerschmitt “Wespe I” and “Wespe II” had swept-back wings, were to be powered by a single turbojet-engine and had a tricycle landing-gear. From this point of view these projects could be dated to the end of the war.
In contrary, unusual for these Messerschmitt project drawings is that none of the dotted-outline turbojets in each of the drawings matches with the contours of any turbojets that are under development or production by BMW, Daimler-Benz, Heinkel-Hirth and Junkers, nor do the thrust figures quoted for them correspond to the known turbojets variants. Gas turbine development in Germany was concerned from the very beginning with the axial-flow type, save for the radial-flow turbojets developed by Dr. ing. von Ohain. This leads to the conclusion that at beginning of the war Messerschmitt possessed no documentation on turbojet development or installation plans hypothesizing that all these “Animal Name” projects could also be dated to the early 1940’s.
In conclusion, perhaps and more likely are these designs the product more of fantasy than reality.

(Ref.: Herwig, Dieter and Heinz Rode: Luftwaffe Secret Projects, Ground Attack & Special Purpose Aircraft. Midland Publishing, Hinckley, LE10 3EY, England)

Messerschmitt Me P. 1106/II (RS-Models, Resin)

TYPE: Fighter, Interceptor, Project

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel-Hirth HeS 011 turbojet engine, rated at 1.300 kp thrust

PERFORMANCE: No data available

COMMENT: The Messerschmitt Me P.1106 was a proposed German fighter aircraft project near the end of WW II. It was intended as an improvement to the Messerschmitt Me P. 1101.
On December 15, 1944 Messerschmitt design team decided to submit another design alongside the Me P.1101 – the Messerschmitt Me P. 1106. This was an advanced update on the final version of the Me P.1092/5 which had been drafted in July 1943 but also bore some similarities to the Me P.1101.
The Messerschmitt Me P. 1106 was redesigned several times. It had a nose air intake and fuselage mounted turbojet-engine. The wings of each design were swept back at 40 degrees. The planned powerplant was a Heinkel-Hirth HeS 011 turbojet engine, and armament was to be two 30 mm MK 108 cannons
The first version (Me P. 1106/I) had a short fuselage and a T-tail with the cockpit faired into the vertical stabilizer, similar to the Lippisch Li P.13a.
The redesigned version shown here  (Me P. 1106/II), had a very short fuselage, too, the vertical stabilizer was changed to a tail plane of butterfly style and the cockpit was housed far aft. This odd shape apparently gave the best aerodynamic performance Messerschmitt and his team had yet achieved but the disadvantage was a poor visibility for the pilot.
A third and final design (Me P. 1106/III) had a longer and slim fuselage with a V-tail plane and the cockpit moved slightly forward.
All projects of the Messerschmitt Me P. 1106 were abandoned since the performance of the Me P.1101 had not been improved on (Ref.: 17, 22, 24).

Blohm & Voss Bv P.202 (Unicraft Models, Resin)

TYPE: Variable-wing fighter. Project

ACCOMMODATION: Pilot only

POWER PLANT: Two BMW 003 turbojet engines, rated at 850 kp each

PERFORMANCE: No data available

COMMENT: The Blohm & Voss P 202 was an unusual design study for a variable-geometry turbojet fighter during World War II. It was the first design to incorporate a slewed wing (also known as an oblique or scissor wing) in which one side swept forward and the other back.
During WW II in Germany intensive work has been done in concern of influence back-swept wings on high-speed aircraft. Calculations as well as wind-tunnel tests showed that swept wings could minimize the effects of compressibility as the speed of sound was approached. But sweeping the wings causes problems of its own, especially at the low speeds used for takeoff and landing. A variable-sweep mechanism was one possible solution but it would be complex, heavy and expensive. It also has problems with movement of the centre of lift. Both backwards and forwards sweep were investigated and they proved to have opposite disadvantages. Sweeping one wing forwards and the other back would balance out the aerodynamic problems and a one-piece slewed wing approach would not need such a complex sweep mechanism.
In 1944, with their project Bv P.202 the design team of Blohm & Voss tried to compensate the disadvantage of swept-back wings a low speed by turning a single full-span wing in its yaw axis so that one side sweeps back and the other side sweeps forward. The shoulder mounted wing was shaped as a disc in the mid-wing section. During take-off and landing as well as at lower speed the wing was in rectangular position with all buoyancy forces such as airbrakes and spoilers still effective. At high speeds the whole wing was slewed at 35° that the left wing showed forward and the right wing backward. The wing span was 39.4 ft when unswept and 32.8 ft when fully swept. Because the fuselage was filled with wing-rotation machinery, the landing gear extended down from the wing main spar, and was very long, while the nose gear retracted backwards into the fuselage. The Blohm & Voss Bv P.202 was powered by a pair of BMW 003 turbojets, slung underneath the fuselage center section and exhausting behind the wing. Provision for three forward-firing cannon was made in the nose. Due to the war situation in Germany the project never left the drawing board (Ref.: 18, 24).

Messerschmitt Me 263 “Scholle” (Plaice), (Huma)

TYPE: Fighter interceptor

ACCOMMODATION: Pilot only

POWER PLANT: One Walter HWK 109-509C-3 dual-chamber liquid-propellant rocket engine,main chamber rated up to 2,000 kp thrust, auxiliary chamber 400 kp thrust

PERFORMANCE: 590 mph

COMMENT: The Messerschmitt Me 263 „Scholle“ (Plaice) was a rocket-powered fighter aircraft developed from the Messerschmitt Me 163 „Komet“ (Comet) towards the end of WW II. Three prototypes were built but never flown under their own power as the rapidly deteriorating military situation in Germany prevented the completion of the test program.
Although the Messerschmitt Me 163 had very short endurance, it had originally been even shorter. In the original design, the engine had only one throttle setting, “full on”, and burned through its fuel in a few minutes. Not only did this further limit endurance, in flight testing, pilots found the aircraft quickly exhibited compressibility effects as soon as they levelled off from the climb and speeds picked up. This led the Reichsluftfahrtministerium (RLM) to demand the addition of a throttle, leading to lengthy delays and a dramatic decrease in fuel economy when throttled.
This problem was addressed in the slightly updated Messerschmitt Me 163C. This featured the same Walter HWK 109-509B or C dual chamber rocket engine already trialled on the Me 163B V6 and V18 prototypes; the main upper chamber („Hauptkammer“) was tuned for high thrust while the lower „Marschofen“ auxiliary combustion chamber was designed for a much lower thrust output (about 400 kgf maximum) for economic cruise. In operation, throttling was accomplished by starting or stopping the main engine, which was about four times as powerful as the smaller one. This change greatly simplified the engine, while also retaining much higher efficiency during cruise. Along with slightly increased fuel tankage, the powered endurance rose to about 12 minutes, a 50% improvement. As the aircraft spent only a short time climbing, this meant the time at combat altitude would be more than doubled.
Throughout development the RLM proved unhappy with the progress on the Me 263 project, and eventually decided to transfer development to Heinrich Hertel at Junkers company. Alexander Lippisch remained at Messerschmitt and retained the support of Waldemar Voigt, continuing development of the Me 163C.
At Junkers, the basic plan of the Me 163C was followed to produce an even larger design, the Junkers Ju 248. It retained the new pressurized cockpit and bubble canopy of the Me 163C, with even more fuel tankage, and adding a new retractable landing gear design. On September 1944 a wooden mock-up was shown to officials. The production version was intended to be powered by the more powerful BMW 109-708 rocket engine in place of the Walter power plant.
Prior to the actual building of the Ju 248, two Me 163Bs, prototype V13 and V18, were slated to be rebuilt. V13 had deteriorated due to weather exposure, so only V18 was rebuilt, but had been flown by test pilot Heini Dittmar at a record-setting 702 mph velocity on July , 1944 and suffered near-total destruction of its rudder surface as a result of high-speed induced compressibility. It is this aircraft that is often identified as the Me 163D, but this aircraft was built after the Ju 248 project had started.
Hertel had hoped to install Lorin ramjet engines, but this technology was still far ahead of its time. As a stopgap measure, they decided to build the aircraft with a „Sondergeräte“ (special equipment) in the form of a „Zusatztreibstoffbehälter“ (auxiliary fuel tank): two 160 l external T-Stoff oxidizer tanks were to be installed under the wings. This would lead to a 10% speed decrease but no negative flight characteristics. Although Junkers claimed the Ju 248 used a standard Me 163B wing, they decided to modify the wing to hold more C-Stoff fuel. This modification was carried out by the Puklitsch firm.
In November 1944, the aircraft was again redesignated as the Messerschmitt Me 263 to show its connection with the Me 163. The two projects also got names – the Ju 248 „Flunder“ (Flounder)) and the Me 263 „Scholle“ (Plaice)). In early 1945, Junkers proposed its own project, the EF 127 „Walli“ rocket fighter, as a competitor to the Me 163C and Me 263.
The first unpowered flight of the Messerschmitt Me 263 V1 was in February 1945. Several more unpowered flights took place that month. The biggest problem had to do with the center of gravity which was restored with the addition of counterweights. Eventually, the production aircraft would have repositioned the engine or the landing gear installation to solve this problem. The landing gear was still non-retractable. The results of those first flights were pricipally satisfying.
Test flights were later stopped because of fuel shortages for the Messerschmitt Bf 110 towplanes. As the Me 263 was not a part of the „Jägernotprogramm“ (Emergency Fighter Programm), it was difficult to get the resources it needed. For the time being the plane was not expected to enter production but further development was allowed. The V2 and V3 were not yet ready. The V2 was to get the retractable landing gear and the V3 would have the armament built in. The next month both the V1 and the V2 had the two-chambered HWK 109-509C installed, correcting the center-of-gravity problems. They flew only as gliders.
In April, American troops occupied the Messerschmitt plant and captured the three prototypes and the mock-up. The V2 was destroyed but another prototype ended up in the US. The rest was handed over to the Russians, who then created their own Mikoyan.Gurewitsch I-270 interceptor (Ref.: 24).

Blohm & Voss Ae 607 (RS Models, Resin)

TYPE: Experimental flying wing aircraft

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel-Hirth HeS 011 turbojet, rated at 1,200 kp thrust

PERFORMANCE: Unknown

COMMENT: The Blohm & Voss Ae 607 was a turbojet-powered flying wing design drawn up by Blohm & Voss in 1945. Very little is known about it and its existence was only confirmed end of the last century.
Early in 1945, a Blohm & Voss aircraft designer called Thieme began work on Drawing Number Ae 607 within the standard drawing numbering system at B&V and labelled it „Nurflügel-TL-Jäger“ („All-wing jet fighter“). His design for a jet fighter was radically different from anything that B&V had done before: A flying wing, it approximated to a 45° delta planform.
An all-wing design, the centre section has a V-shaped lower profile deepening its keel and is sharply tapered both front and rear, while the outer sections are sharply swept at approximately 45° and tapered, giving the leading edge a sweep greater than 45° and the trailing edge an M-shaped outline from above. The wing tips are turned down, giving them a slight anhedral.
A turbojet engine duct runs down the centre, with the Heinkel-Hirth HeS 011 engine installed towards the rear. A small tail fin is placed above the jet exhaust duct, while the pilot’s cockpit is set just in front of the engine, but still well aft, and is offset to one side to give the pilot room alongside the intake duct. It is covered by a teardrop canopy. Two small, low aspect ratio and untapered canard foreplanes sweep forward from either side of the nose intake.
The undercarriage comprises main wheels retracting outwards and twin tailwheels retracting on either side of the engine exhaust duct. On the ground, it sits with a marked nose-up attitude presumably to keep the air intake well away from any surface debris while take-off. Estimated performance as well as it’s conceptual formulation is unknown. The Blohm & Voss Ae 607 „Nurflügel-TL-Jäger“ never received a „P“ number (Project number) and was probably only intended to showcase ideas for solving particular problems facing designers when designing on a layout for fighters. The authenticity of the „Nurflügel-TL-Jäger“ has been questioned for years but, oddly enough, it has proven to be an entirely genuine wartime design (Ref.: 24).

Heinkel He P. 1078C (Frank Airmodel, Resin)

TYPE: Interceptor

ACCOMMODATION: Pilot only

POWER PLANT: One Heinkel/Hirth HeS 011 turbojet engine, rated at 1,200 kp thrust

PERFORMANCE: 480 mph at 32,800 ft

COMMENT: The Heinkel He P.1078 was a single-seat interceptor developed for the Luftwaffe by Heinkel aircraft manufacturing company under the  „Jägernotprogramm“ (Emergency Fighter Programm) during the closing stage of the Third Reich.
Germany’s Emergency Fighter Program was enacted in the middle of July in 1944 in response to the Allied bombing offensive taking out critical German war-making capabilities. The new aircraft was intended to have superior performance in order to deal with the expected high altitude threats such as the Boeing B-29 Superfortress, but only had a 30-minute endurance figure.
The high-altitude fighter designs brought forward by other German aircraft makers were the Messerschmitt Me P.1101, Focke-Wulf Ta 183 „Huckebein“, Blohm & Voss Bv P.212, and Junkers EF 128.
The Heinkel Company was a competitor, too, and offered ist He P.1078 project in three quite different variants. All of them were a single-seat fighters with polyhedral swept wings. The wings were swept back at 40 degrees and included wood in their construction. All of the projected aircraft had the wing tips angled downwards and all of them would be powered by a single Heinkel/Hirth HeS 011 turbojet.
The Heinkel He P.1078A was a turbojet-powered interceptor. It was the most conventional-looking of the three designs submitted for it was the only one having a tail. Its armament was two MK 108 cannons, as in the following two variants.
The Heinkel He P.1078B was a tailles asymmetric jet-powered interceptor with a short fuselage in which the air intake of the engine was located in the middle between two gondolas. The cockpit was located on the gondola of the left side, while the right side gondola contained the front undercarriage leg and cannon armament.
Finally the Heinkel He P.1078C was a tailless interceptor project similar to the He P.1078B but with a single short fuselage. Both the He P.1078B and He P.1078C had wing tips angled downwards at a more pronounced angle than the He P.1078A.
To keep production costs down and expedite mass production, the Heinkel He P.1078C design was relatively simple in nature, utilizing wood wherever possible. The metal fuselage sported a length no longer than 17 feet and contained the armored cockpit, armament and relatively large single engine fitting, fuel was to be housed in the wings. Wingspan was just under 30 feet and the design as a whole just topped 7 feet, 8 inches in height. The armament would have consisted of two MK 108 cannons fitted to either side of the nose section. The nose section itself was rather short and acted as the air intake to aspirate the turbojet engine buried further aft in the design. The opening was rectangular in nature and conformed well to the fuselage’s square appearance when viewed in the forward profile. The engine exhausted at the rear through a conventional exhaust ring. The cockpit was held well-forward in the design with the pilot seated under a small canopy allowing for limited viewing ahead and to the sides (the rear was obstructed by way of a short fuselage spine). The undercarriage was fully retractable and would have consisted of three landing gear legs: two main legs at amidships and a nose landing gear leg – all were single-wheeled installations. When at rest, this arrangement would have given the He P.0178C a distinct “nose-up” appearance, in effect perhaps promoting quicker take-offs with the increased wing drag at speed. Since the turbojet-powered fighter would have been operating at high altitudes, the cockpit was to be fully pressurized and equipped withan ejection seat.
Perhaps the most identifiable portion of the He P.1078Cs design was its wings. The assemblies were fitted high against the fuselage sides and extensively swept rearwards. Each wing was cranked upwards from fuselage centerline up to roughly three-quarters out and then capped with a short wing piece cranked sharply downwards. The reason for this design was largely related to aerodynamic principles that were still being researched at the time and the result was to have combated stress effects on the wings at high speeds. Ernst Heinkel was convinced of their ability to provide for increased maneuvering and agility during dogfights. It bears note that there were no horizontal tailplanes in the Heinkel design and the entire internal fuel load for the thirsty turbojet engine was to be stored across both of the wings. However, the wings were not armored which unduly would have exposed them to enemy fire even of the slightest degree.
After being subject to severe criticism, the project was cancelled by Heinkel at the end of February 1945 (Ref: 17, 22, 24).